malek-messaoudii
feat: Add extract_topic and voice_chat tools to MCP service, enhancing functionality for topic extraction and chatbot responses. Update models and routes to support new features.
1ce17ff
from pydantic import BaseModel, Field, ConfigDict
from typing import Any, Dict, List, Optional
class ToolCallRequest(BaseModel):
"""Request for calling an MCP tool"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"tool_name": "detect_stance",
"arguments": {
"topic": "Climate change is real",
"argument": "Rising global temperatures prove it"
}
}
}
)
tool_name: str = Field(..., description="Name of the MCP tool to call (e.g., 'detect_stance', 'match_keypoint_argument', 'transcribe_audio', 'generate_speech', 'generate_argument', 'extract_topic', 'voice_chat')")
arguments: Dict[str, Any] = Field(default_factory=dict, description="Arguments for the tool (varies by tool)")
class ToolCallResponse(BaseModel):
"""Response from MCP tool call"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"success": True,
"result": {
"predicted_stance": "PRO",
"confidence": 0.9598,
"probability_con": 0.0402,
"probability_pro": 0.9598
},
"error": None,
"tool_name": "detect_stance"
}
}
)
success: bool = Field(..., description="Whether the tool call was successful")
result: Optional[Dict[str, Any]] = Field(None, description="Result from the tool call")
error: Optional[str] = Field(None, description="Error message if the call failed")
tool_name: str = Field(..., description="Name of the tool that was called")
# Response models for individual MCP tools
class DetectStanceResponse(BaseModel):
"""Response model for stance detection"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"predicted_stance": "PRO",
"confidence": 0.9598,
"probability_con": 0.0402,
"probability_pro": 0.9598
}
}
)
predicted_stance: str = Field(..., description="PRO or CON")
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score")
probability_con: float = Field(..., ge=0.0, le=1.0)
probability_pro: float = Field(..., ge=0.0, le=1.0)
class MatchKeypointResponse(BaseModel):
"""Response model for keypoint matching"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"prediction": 1,
"label": "apparie",
"confidence": 0.8157,
"probabilities": {
"non_apparie": 0.1843,
"apparie": 0.8157
}
}
}
)
prediction: int = Field(..., description="1 = apparie, 0 = non_apparie")
label: str = Field(..., description="apparie or non_apparie")
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score")
probabilities: Dict[str, float] = Field(..., description="Dictionary of class probabilities")
class TranscribeAudioResponse(BaseModel):
"""Response model for audio transcription"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"text": "Hello, this is the transcribed text from the audio file."
}
}
)
text: str = Field(..., description="Transcribed text from audio")
class GenerateSpeechResponse(BaseModel):
"""Response model for speech generation"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"audio_path": "temp_audio/tts_e9b78164.wav"
}
}
)
audio_path: str = Field(..., description="Path to generated audio file")
class ExtractTopicResponse(BaseModel):
"""Response model for topic extraction"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"text": "Governments should subsidize electric cars to encourage adoption.",
"topic": "government subsidies for electric vehicle adoption",
"timestamp": "2024-01-01T12:00:00"
}
}
)
text: str = Field(..., description="The input text")
topic: str = Field(..., description="The extracted topic")
timestamp: Optional[str] = Field(None, description="Timestamp of extraction")
class VoiceChatResponse(BaseModel):
"""Response model for voice chat"""
model_config = ConfigDict(
json_schema_extra={
"example": {
"user_input": "What is climate change?",
"conversation_id": "uuid-here",
"response": "Climate change refers to long-term changes in global temperatures and weather patterns.",
"timestamp": "2024-01-01T12:00:00"
}
}
)
user_input: str = Field(..., description="The user's input text")
conversation_id: Optional[str] = Field(None, description="The conversation ID")
response: str = Field(..., description="The chatbot's response")
timestamp: Optional[str] = Field(None, description="Timestamp of response")
class ResourceInfo(BaseModel):
"""Information about an MCP resource"""
uri: str
name: str
description: Optional[str] = None
mime_type: str
class ToolInfo(BaseModel):
"""Information about an MCP tool"""
name: str
description: str
input_schema: Dict[str, Any]
class ResourceListResponse(BaseModel):
"""Response for listing resources"""
resources: List[ResourceInfo]
count: int
class ToolListResponse(BaseModel):
"""Response for listing tools"""
tools: List[ToolInfo]
count: int