Forecast-Sandbox-Lite / models /compute_baselines.py
PranavSharma's picture
Initial Commit
b099c5d verified
from typing import Dict
import warnings
from pathlib import Path
import pandas as pd
from typing import Any
from tqdm import tqdm
import numpy as np
from utils.metrics import mae, bias
from statsforecast import StatsForecast
from statsforecast.models import (
# Baselines
Naive,
SeasonalNaive,
RandomWalkWithDrift,
HistoricAverage,
WindowAverage,
# Exponential smoothing / Holt / Holt-Winters
SimpleExponentialSmoothingOptimized,
SeasonalExponentialSmoothingOptimized,
Holt,
HoltWinters,
# Theta family
Theta,
OptimizedTheta,
DynamicTheta,
DynamicOptimizedTheta,
# ARIMA
# AutoARIMA,
# Intermittent
CrostonClassic,
CrostonOptimized,
CrostonSBA,
)
### ----- Configuration ----- ###
TRAIN_DATA_PATH = Path("data/processed/train.csv")
TEST_DATA_PATH = Path("data/processed/test.csv")
METRICS_PATH = Path("metrics/baseline_metrics.csv")
PREDICTIONS_PATH = Path("metrics/baseline_predictions.csv")
### ------------------------- ###
HORIZON = 14 # Forecast horizon
warnings.filterwarnings("ignore")
# Adding type hints for better code clarity and numpy style comments for documentation
def build_baseline_models(
season_length: int = 7,
window_size: int = 4,
) -> Dict[str, Any]:
"""Build a dictionary of baseline forecasting models.
Parameters
----------
season_length : int, optional
Seasonality length, by default 7
window_size : int, optional
Window size for moving average models, by default 4
Returns
-------
Dict[str, Any]
Dictionary of baseline forecasting models
"""
models= {
# ----------------------
# 1) Naive family
# ----------------------
str(Naive().__class__.__name__): Naive(),
str(SeasonalNaive(season_length=season_length).__class__.__name__): SeasonalNaive(season_length=season_length),
str(RandomWalkWithDrift().__class__.__name__): RandomWalkWithDrift(),
str(HistoricAverage().__class__.__name__): HistoricAverage(),
str(WindowAverage(window_size=window_size).__class__.__name__): WindowAverage(window_size=window_size),
# ----------------------
# 2) SES / Holt / Holt-Winters
# ----------------------
# SES ~ simple exponential smoothing
str(SimpleExponentialSmoothingOptimized().__class__.__name__): SimpleExponentialSmoothingOptimized(),
str(SeasonalExponentialSmoothingOptimized(season_length=season_length).__class__.__name__): SeasonalExponentialSmoothingOptimized(season_length=season_length),
# Holt: level + trend, no seasonality
str(Holt().__class__.__name__): Holt(),
str(HoltWinters(
season_length=7, # e.g. weekly seasonality for daily data # or "multiplicative"
).__class__.__name__): HoltWinters(
season_length=7, # e.g. weekly seasonality for daily data
),
# ----------------------
# 3) Theta family
# ----------------------
str(Theta().__class__.__name__): Theta(),
str(OptimizedTheta().__class__.__name__): OptimizedTheta(),
str(DynamicTheta().__class__.__name__): DynamicTheta(),
str(DynamicOptimizedTheta().__class__.__name__): DynamicOptimizedTheta(),
# ----------------------
# 4) ARIMA baseline
# ----------------------
# str(AutoARIMA().__class__.__name__): AutoARIMA(season_length=season_length),
# ----------------------
# 5) Intermittent demand
# ----------------------
str(CrostonClassic().__class__.__name__): CrostonClassic(),
str(CrostonSBA().__class__.__name__): CrostonSBA(),
str(CrostonOptimized().__class__.__name__): CrostonOptimized(),
}
return models
# Adding type hints for better code clarity and numpy style comments for documentation
def compute_baseline_forecasts(
df: pd.DataFrame,
models: Dict[str, Any],
horizon: int = HORIZON,
) -> pd.DataFrame:
"""
df: train dataframe with columns ['id', 'date', 'sales']
returns: long dataframe with columns
['id', 'model', 'h', 'forecast']
"""
results = []
sku_ids = df['id'].unique()
for sku_id in tqdm(sku_ids):
sku_data = df[df['id'] == sku_id].sort_values('date').copy()
if len(sku_data) <= horizon + 5:
continue
sku_data.rename(columns={'sales': 'y', 'id': 'unique_id'}, inplace=True)
# dummy calendar for StatsForecast β€” only order matters
sku_data['ds'] = pd.date_range(start='2021-01-01', periods=len(sku_data), freq='D')
sku_data = sku_data[['unique_id', 'ds', 'y']]
for model_name, model in models.items():
sf = StatsForecast(models=[model], freq='D', n_jobs=1)
sf.fit(sku_data)
forecast_df = sf.predict(h=horizon)
# StatsForecast sometimes uses short aliases for columns
# map model_name β†’ column name
col_map = {
"RandomWalkWithDrift": "RWD",
"SimpleExponentialSmoothingOptimized": "SESOpt",
"SeasonalExponentialSmoothingOptimized": "SeasESOpt",
}
col = col_map.get(model_name, model.__class__.__name__)
if col not in forecast_df.columns:
raise ValueError(f"Column {col} not found for model {model_name}")
forecast_values = forecast_df[col].values
for step in range(horizon):
results.append({
"id": sku_id,
"model": model_name,
"h": step + 1,
"forecast": float(forecast_values[step]),
})
return pd.DataFrame(results)
def compute_metrics(
test_df: pd.DataFrame,
forecasts_df: pd.DataFrame,
horizon: int = HORIZON,
) -> pd.DataFrame:
"""
test_df: ['id', 'date', 'sales', ...]
forecasts_df: ['id', 'model', 'h', 'forecast']
returns: ['id', 'model', 'mae', 'bias', 'score']
"""
test_df = test_df.sort_values(["id", "date"]).copy()
# assign step index 1..H per SKU in time order
test_df["h"] = test_df.groupby("id").cumcount() + 1
metrics_rows = []
for (sku_id, model_name), g_fore in forecasts_df.groupby(["id", "model"]):
g_test = test_df[test_df["id"] == sku_id].copy()
if g_test["h"].max() < horizon:
# test shorter than horizon for some reason
continue
# align on h
merged = pd.merge(
g_test[["id", "h", "sales"]],
g_fore[["id", "h", "forecast"]],
on=["id", "h"],
how="inner",
)
if merged.empty:
continue
y_true = merged["sales"].values
y_pred = merged["forecast"].values
m = mae(y_true, y_pred)
b = bias(y_true, y_pred)
s = m + abs(b)
metrics_rows.append({
"id": sku_id,
"model": model_name,
"mae": float(m),
"bias": float(b),
"score": float(s),
})
return pd.DataFrame(metrics_rows)
if __name__ == "__main__":
# Load data
train_df = pd.read_csv(TRAIN_DATA_PATH)
test_df = pd.read_csv(TEST_DATA_PATH)
# Build baseline models
baseline_models = build_baseline_models()
# Forecast from train into test horizon
train_forecasts = compute_baseline_forecasts(train_df, baseline_models, horizon=HORIZON)
# Save raw forecasts (for later UI)
PREDICTIONS_PATH.parent.mkdir(parents=True, exist_ok=True)
train_forecasts.to_csv(PREDICTIONS_PATH, index=False)
# Compute metrics vs test
metrics_df = compute_metrics(test_df, train_forecasts, horizon=HORIZON)
metrics_df.to_csv(METRICS_PATH, index=False)
print("Saved:")
print(f" - forecasts β†’ {PREDICTIONS_PATH}")
print(f" - metrics β†’ {METRICS_PATH}")