Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,378 Bytes
81d425d 38ad444 81d425d 38ad444 81d425d 38ad444 81d425d 38ad444 81d425d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
from __future__ import annotations
import itertools
import sys
import threading
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
import numpy as np
import torch
def _patch_torch_load_for_old_ckpt() -> None:
"""
Matches `anime_face_eye_extract._patch_torch_load_for_old_ckpt()` to load older YOLOv5 checkpoints
on newer torch versions.
"""
import numpy as _np
try:
torch.serialization.add_safe_globals([_np.core.multiarray._reconstruct, _np.ndarray])
except Exception:
pass
_orig_load = torch.load
def _patched_load(*args, **kwargs): # noqa: ANN001
kwargs.setdefault("weights_only", False)
return _orig_load(*args, **kwargs)
torch.load = _patched_load
def _pre(gray: np.ndarray) -> np.ndarray:
import cv2
gray = cv2.GaussianBlur(gray, (3, 3), 0)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
return clahe.apply(gray)
def _expand(box, margin: float, W: int, H: int):
x1, y1, x2, y2 = box
cx = (x1 + x2) / 2.0
cy = (y1 + y2) / 2.0
w = (x2 - x1) * (1 + margin)
h = (y2 - y1) * (1 + margin)
nx1 = int(round(cx - w / 2))
ny1 = int(round(cy - h / 2))
nx2 = int(round(cx + w / 2))
ny2 = int(round(cy + h / 2))
nx1 = max(0, min(W, nx1))
ny1 = max(0, min(H, ny1))
nx2 = max(0, min(W, nx2))
ny2 = max(0, min(H, ny2))
return nx1, ny1, nx2, ny2
def _shrink(img: np.ndarray, limit: int):
import cv2
h, w = img.shape[:2]
m = max(h, w)
if m <= limit:
return img, 1.0
s = limit / float(m)
nh, nw = int(h * s), int(w * s)
small = cv2.resize(img, (nw, nh), interpolation=cv2.INTER_AREA)
return small, s
def _pad_to_square_rgb(img: np.ndarray) -> np.ndarray:
"""
Pad an RGB crop to a square (1:1) using edge-padding.
This guarantees 1:1 aspect ratio without stretching content.
"""
if img is None or img.size == 0:
return img
h, w = img.shape[:2]
if h == w:
return img
s = max(h, w)
pad_y = s - h
pad_x = s - w
top = pad_y // 2
bottom = pad_y - top
left = pad_x // 2
right = pad_x - left
return np.pad(img, ((top, bottom), (left, right), (0, 0)), mode="edge")
def _square_box_from_rect(rect, *, scale: float, W: int, H: int):
"""
Convert a rectangle (x1,y1,x2,y2) into a square box centered on the rect,
scaled by `scale`, clamped to image bounds.
"""
x1, y1, x2, y2 = [int(v) for v in rect]
cx = (x1 + x2) / 2.0
cy = (y1 + y2) / 2.0
bw = max(1.0, float(x2 - x1))
bh = max(1.0, float(y2 - y1))
side = max(bw, bh) * float(scale)
nx1 = int(round(cx - side / 2.0))
ny1 = int(round(cy - side / 2.0))
nx2 = int(round(cx + side / 2.0))
ny2 = int(round(cy + side / 2.0))
nx1 = max(0, min(W, nx1))
ny1 = max(0, min(H, ny1))
nx2 = max(0, min(W, nx2))
ny2 = max(0, min(H, ny2))
if nx2 <= nx1 or ny2 <= ny1:
return None
return nx1, ny1, nx2, ny2
def _split_box_by_midline(box, mid_x: int):
"""
If a box crosses the vertical midline, split into left/right boxes.
Returns list of (tag, box).
"""
x1, y1, x2, y2 = [int(v) for v in box]
if x1 < mid_x < x2:
left = (x1, y1, mid_x, y2)
right = (mid_x, y1, x2, y2)
out = []
if left[2] > left[0]:
out.append(("left", left))
if right[2] > right[0]:
out.append(("right", right))
return out
tag = "left" if (x1 + x2) / 2.0 <= mid_x else "right"
return [(tag, (x1, y1, x2, y2))]
def _best_pair(boxes, W: int, H: int):
clean = [(int(b[0]), int(b[1]), int(b[2]), int(b[3])) for b in boxes]
if len(clean) < 2:
return []
def cxcy(b):
x1, y1, x2, y2 = b
return (x1 + x2) / 2.0, (y1 + y2) / 2.0
def area(b):
x1, y1, x2, y2 = b
return max(1, (x2 - x1) * (y2 - y1))
best = None
best_s = 1e9
for b1, b2 in itertools.combinations(clean, 2):
c1x, c1y = cxcy(b1)
c2x, c2y = cxcy(b2)
a1, a2 = area(b1), area(b2)
horiz = 0.0 if c1x < c2x else 0.5
y_aln = abs(c1y - c2y) / max(1.0, H)
szsim = abs(a1 - a2) / float(max(a1, a2))
gap = abs(c2x - c1x) / max(1.0, W)
if 0.05 <= gap <= 0.5:
gap_pen = 0.0
else:
gap_pen = 0.5 * ((0.5 + abs(gap - 0.05) * 10) if gap < 0.05 else (gap - 0.5) * 2.0)
mean_y = (c1y + c2y) / 2.0 / max(1.0, H)
upper = 0.3 * max(0.0, (mean_y - 0.67) * 2.0)
s = y_aln + szsim + gap_pen + upper + horiz
if s < best_s:
best_s = s
best = (b1, b2)
if best is None:
return []
b1, b2 = best
left, right = (b1, b2) if (b1[0] + b1[2]) <= (b2[0] + b2[2]) else (b2, b1)
return [("left", left), ("right", right)]
@dataclass
class ExtractorCfg:
yolo_dir: Path
weights: Path
cascade: Path
imgsz: int = 640
conf: float = 0.5
iou: float = 0.5
yolo_device: str = "cpu" # "cpu" or "0"
eye_roi_frac: float = 0.70
eye_min_size: int = 12
eye_margin: float = 0.60
neighbors: int = 9
eye_downscale_limit_roi: int = 512
eye_downscale_limit_face: int = 768
eye_fallback_to_face: bool = True
class AnimeFaceEyeExtractor:
"""
Single-image view extractor (whole -> face crop, eyes crop) based on `anime_face_eye_extract.py`.
Designed for use in the Gradio UI: caches YOLO model + Haar cascade.
"""
def __init__(self, cfg: ExtractorCfg):
self.cfg = cfg
self._model = None
self._device = None
self._stride = 32
self._tl = threading.local()
def _init_detector(self) -> None:
if self._model is not None:
return
ydir = self.cfg.yolo_dir.resolve()
if not ydir.exists():
raise RuntimeError(f"yolov5_anime dir not found: {ydir}")
if str(ydir) not in sys.path:
sys.path.insert(0, str(ydir))
_patch_torch_load_for_old_ckpt()
from models.experimental import attempt_load
from utils.torch_utils import select_device
self._device = select_device(self.cfg.yolo_device)
self._model = attempt_load(str(self.cfg.weights), map_location=self._device)
self._model.eval()
self._stride = int(self._model.stride.max())
s = int(self.cfg.imgsz)
s = int(np.ceil(s / self._stride) * self._stride)
self.cfg.imgsz = s
def _letterbox_compat(self, img0, new_shape, stride):
from utils.datasets import letterbox
try:
lb = letterbox(img0, new_shape, stride=stride, auto=False)
except TypeError:
try:
lb = letterbox(img0, new_shape, auto=False)
except TypeError:
lb = letterbox(img0, new_shape)
return lb[0]
def _detect_faces(self, rgb: np.ndarray):
import cv2
self._init_detector()
from utils.general import non_max_suppression, scale_coords
img0 = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
h0, w0, _ = img0.shape
img = self._letterbox_compat(img0, self.cfg.imgsz, self._stride)
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
im = torch.from_numpy(img).to(self._device)
im = im.float() / 255.0
if im.ndim == 3:
im = im[None]
with torch.no_grad():
pred = self._model(im)[0]
pred = non_max_suppression(pred, conf_thres=self.cfg.conf, iou_thres=self.cfg.iou, classes=None, agnostic=False)
boxes = []
det = pred[0]
if det is not None and len(det):
det[:, :4] = scale_coords((self.cfg.imgsz, self.cfg.imgsz), det[:, :4], (h0, w0)).round()
for *xyxy, conf, cls in det.tolist():
x1, y1, x2, y2 = [int(v) for v in xyxy]
boxes.append((x1, y1, x2, y2))
return boxes
def _get_cascade(self):
import cv2
c = getattr(self._tl, "cascade", None)
if c is None:
c = cv2.CascadeClassifier(str(self.cfg.cascade))
if c.empty():
raise RuntimeError(f"cascade load fail: {self.cfg.cascade}")
self._tl.cascade = c
return c
def _detect_eyes_in_roi(self, rgb_roi: np.ndarray):
import cv2
gray = cv2.cvtColor(rgb_roi, cv2.COLOR_RGB2GRAY)
proc = _pre(gray)
H, W = proc.shape[:2]
min_side = max(1, min(W, H))
dyn_min = int(0.07 * min_side)
min_sz = max(8, int(self.cfg.eye_min_size), dyn_min)
cascade = self._get_cascade()
raw = cascade.detectMultiScale(
proc,
scaleFactor=1.15,
minNeighbors=int(self.cfg.neighbors),
minSize=(min_sz, min_sz),
flags=cv2.CASCADE_SCALE_IMAGE,
)
try:
arr = np.asarray(raw if not isinstance(raw, tuple) else raw[0])
except Exception:
arr = np.empty((0, 4), dtype=int)
if arr.size == 0:
return []
if arr.ndim == 1:
arr = arr.reshape(1, -1)
boxes = []
for r in arr:
x, y, w, h = [int(v) for v in r[:4]]
if w <= 0 or h <= 0:
continue
boxes.append((x, y, x + w, y + h))
return boxes
@staticmethod
def _pick_best_face(boxes):
if not boxes:
return None
# choose largest-area face
def area(b):
x1, y1, x2, y2 = b
return max(1, (x2 - x1) * (y2 - y1))
return max(boxes, key=area)
def extract(self, whole_rgb: np.ndarray) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
"""
Args:
whole_rgb: HWC RGB uint8
Returns:
(face_rgb, eye_rgb) as RGB uint8 crops (or None if not found)
"""
import cv2
boxes = self._detect_faces(whole_rgb)
face_box = self._pick_best_face(boxes)
if face_box is None:
return None, None
x1, y1, x2, y2 = face_box
H0, W0 = whole_rgb.shape[:2]
x1 = max(0, min(W0, x1))
x2 = max(0, min(W0, x2))
y1 = max(0, min(H0, y1))
y2 = max(0, min(H0, y2))
if x2 <= x1 or y2 <= y1:
return None, None
face = whole_rgb[y1:y2, x1:x2].copy()
# eye detection on upper ROI
H, W = face.shape[:2]
roi_h = int(H * float(self.cfg.eye_roi_frac))
roi = face[0: max(1, roi_h), :]
roi_small, s_roi = _shrink(roi, int(self.cfg.eye_downscale_limit_roi))
face_small, s_face = _shrink(face, int(self.cfg.eye_downscale_limit_face))
eyes_roi = self._detect_eyes_in_roi(roi_small)
eyes_roi = [(int(a / s_roi), int(b / s_roi), int(c / s_roi), int(d / s_roi)) for (a, b, c, d) in eyes_roi]
labs = _best_pair(eyes_roi, W, roi.shape[0])
origin = "roi" if labs else None
eyes_full = []
if self.cfg.eye_fallback_to_face and (not labs):
eyes_full = self._detect_eyes_in_roi(face_small)
eyes_full = [(int(a / s_face), int(b / s_face), int(c / s_face), int(d / s_face)) for (a, b, c, d) in eyes_full]
if len(eyes_full) >= 2:
labs = _best_pair(eyes_full, W, H)
origin = "face" if labs else origin
if not labs:
cand = eyes_roi
cand_origin = "roi"
if self.cfg.eye_fallback_to_face and len(eyes_full) >= 1:
cand = eyes_full
cand_origin = "face"
if len(cand) >= 2:
top2 = sorted(cand, key=lambda b: (b[2] - b[0]) * (b[3] - b[1]), reverse=True)[:2]
top2 = sorted(top2, key=lambda b: (b[0] + b[2]))
labs = [("left", top2[0]), ("right", top2[1])]
origin = cand_origin
elif len(cand) == 1:
labs = [("left", cand[0])]
origin = cand_origin
eye_crop = None
if labs:
src_img = roi if origin == "roi" else face
bound_h = roi.shape[0] if origin == "roi" else H
mid_x = int(round(W / 2.0))
# Build candidate eye boxes; split any box that crosses the midline
candidates = []
for tag, b in labs:
candidates.extend(_split_box_by_midline(b, mid_x))
# Deterministically choose the LEFT eye if present; otherwise fall back to largest
left_boxes = [b for (t, b) in candidates if t == "left"]
pick_from = left_boxes if left_boxes else [b for (_, b) in candidates]
chosen = max(pick_from, key=lambda bb: max(1, (bb[2] - bb[0]) * (bb[3] - bb[1])))
# Square crop around the chosen eye (no stretching); pad to square to guarantee 1:1.
scale = 1.0 + float(self.cfg.eye_margin)
sq = _square_box_from_rect(chosen, scale=scale, W=W, H=bound_h)
if sq is not None:
ex1, ey1, ex2, ey2 = sq
crop = src_img[ey1:ey2, ex1:ex2]
if crop.size > 0 and min(crop.shape[0], crop.shape[1]) >= int(self.cfg.eye_min_size):
eye_crop = _pad_to_square_rgb(crop.copy())
return face, eye_crop
|