Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,805 Bytes
81d425d e27d16d c61411c 81d425d e27d16d 1262a0d 81d425d 5570c3c 81d425d aacdfe6 81d425d aacdfe6 81d425d c61411c 81d425d b1b0bc5 81d425d b04d768 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d b1b0bc5 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 81d425d 5570c3c 39e77fe 93d1be8 39e77fe 5570c3c 39e77fe 5570c3c 39e77fe 5570c3c 39e77fe 5570c3c 39e77fe 5570c3c 39e77fe 38ad444 0ff521b 178daad 81d425d 178daad 81d425d 178daad 81d425d 178daad b1b0bc5 178daad 0ff521b 178daad 0ff521b 81d425d 0ff521b 178daad b1b0bc5 81d425d 178daad 81d425d 178daad 81d425d 178daad 81d425d 178daad 81d425d 178daad 81d425d 178daad 81d425d 178daad 059ebcb 81d425d 5570c3c 93d1be8 5570c3c 39e77fe 5570c3c b1b0bc5 39e77fe 5570c3c 39e77fe 5570c3c b1b0bc5 39e77fe 5570c3c 39e77fe 89b3ad1 81d425d 89b3ad1 178daad b1b0bc5 178daad 81d425d 178daad 81d425d 178daad 81d425d 38ad444 81d425d c61411c 81d425d c61411c 81d425d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
from __future__ import annotations
import argparse
import os
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
import torch
from PIL import Image
try:
import spaces # Hugging Face Spaces helper package
except Exception: # noqa: BLE001
spaces = None
# Detect if running on HF Spaces (ZeroGPU requires special handling)
_ON_SPACES = bool(os.getenv("SPACE_ID") or os.getenv("HF_SPACE"))
def _patch_fastapi_starlette_middleware_unpack() -> None:
"""
Work around FastAPI/Starlette version mismatches where Starlette's Middleware
iterates as (cls, args, kwargs) but FastAPI expects (cls, options).
The user reported: ValueError: too many values to unpack (expected 2)
in fastapi.applications.FastAPI.build_middleware_stack.
"""
try:
import fastapi.applications as fa
from starlette.middleware import Middleware as StarletteMiddleware
except Exception:
return
# Idempotent: don't patch multiple times.
if getattr(fa.FastAPI.build_middleware_stack, "_aec_patched", False):
return
orig = fa.FastAPI.build_middleware_stack
def patched_build_middleware_stack(self): # noqa: ANN001
# Mostly copied from FastAPI, but with robust handling of Middleware objects.
debug = self.debug
error_handler = None
exception_handlers = {}
if self.exception_handlers:
exception_handlers = self.exception_handlers
error_handler = exception_handlers.get(500) or exception_handlers.get(Exception)
from starlette.middleware.errors import ServerErrorMiddleware
from starlette.middleware.exceptions import ExceptionMiddleware
from fastapi.middleware.asyncexitstack import AsyncExitStackMiddleware
middleware = (
[StarletteMiddleware(ServerErrorMiddleware, handler=error_handler, debug=debug)]
+ self.user_middleware
+ [
StarletteMiddleware(ExceptionMiddleware, handlers=exception_handlers, debug=debug),
StarletteMiddleware(AsyncExitStackMiddleware),
]
)
app = self.router
for m in reversed(middleware):
# Starlette Middleware object
if hasattr(m, "cls") and hasattr(m, "args") and hasattr(m, "kwargs"):
app = m.cls(app=app, *list(m.args), **dict(m.kwargs))
continue
# Old-style tuple/list
if isinstance(m, (tuple, list)):
if len(m) == 2:
cls, options = m
app = cls(app=app, **options)
continue
if len(m) == 3:
cls, args, kwargs = m
app = cls(app=app, *list(args), **dict(kwargs))
continue
# Fallback to original behavior for unexpected types
return orig(self)
return app
patched_build_middleware_stack._aec_patched = True # type: ignore[attr-defined]
fa.FastAPI.build_middleware_stack = patched_build_middleware_stack
_patch_fastapi_starlette_middleware_unpack()
import gradio as gr
if spaces is not None:
# Hugging Face GPU Spaces require at least one @spaces.GPU-decorated function.
# We decorate a tiny no-op marker and also (optionally) wrap inference-heavy calls.
@spaces.GPU
def _spaces_gpu_marker(): # noqa: D401
"""Marker function for Hugging Face GPU Spaces."""
return True
def _launch_compat(demo: gr.Blocks, **kwargs):
"""
Launch Gradio across versions by only passing supported kwargs.
Some versions don't support e.g. `show_api=...`.
"""
import inspect
sig = inspect.signature(demo.launch)
allowed = set(sig.parameters.keys())
safe_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
return demo.launch(**safe_kwargs)
def _patch_gradio_client_bool_jsonschema() -> None:
"""
Work around gradio_client JSON-schema parsing bug where it assumes schema is a dict,
but JSON Schema allows booleans for additionalProperties (true/false).
Error seen:
TypeError: argument of type 'bool' is not iterable
in gradio_client/utils.py:get_type -> if "const" in schema:
"""
try:
import gradio_client.utils as gcu
except Exception:
return
# Idempotent: patch once.
if getattr(getattr(gcu, "get_type", None), "_aec_patched", False):
return
orig_get_type = gcu.get_type
def patched_get_type(schema): # noqa: ANN001
if isinstance(schema, bool):
# additionalProperties: false/true
return "object"
if schema is None:
return "object"
if not isinstance(schema, dict):
return "object"
return orig_get_type(schema)
patched_get_type._aec_patched = True # type: ignore[attr-defined]
gcu.get_type = patched_get_type
# Also patch the deeper helper that assumes schema is always a dict.
orig_inner = getattr(gcu, "_json_schema_to_python_type", None)
if callable(orig_inner) and not getattr(orig_inner, "_aec_patched", False):
def patched_inner(schema, defs=None): # noqa: ANN001
# JSON Schema allows boolean schemas: https://json-schema.org/
if isinstance(schema, bool):
return "typing.Any"
if schema is None:
return "typing.Any"
if not isinstance(schema, dict):
return "typing.Any"
return orig_inner(schema, defs)
patched_inner._aec_patched = True # type: ignore[attr-defined]
gcu._json_schema_to_python_type = patched_inner
_patch_gradio_client_bool_jsonschema()
from app.model_io import LoadedModel, embed_triview, load_style_model
from app.proto_db import PrototypeDB, load_prototype_db, topk_predictions_unique_labels
from app.view_extractor import AnimeFaceEyeExtractor, ExtractorCfg
from app.visualization import ViewAnalysis, analyze_views, format_view_weights_html
ROOT = Path(__file__).resolve().parent
CKPT_DIR = ROOT / "checkpoints_style"
def _list_pt_files(folder: Path) -> List[str]:
if not folder.exists():
return []
return [str(p) for p in sorted(folder.glob("*.pt"))]
def _list_ckpt_files(folder: Path) -> List[str]:
files = _list_pt_files(folder)
# heuristics: training checkpoints usually look like "stageX_epochY.pt"
ckpts = [f for f in files if "stage" in Path(f).name.lower() and "epoch" in Path(f).name.lower()]
return ckpts if ckpts else files
def _list_proto_files(folder: Path) -> List[str]:
"""
List prototype DB candidates.
On Spaces, users may upload prototype DBs with arbitrary names. We therefore:
- include all *.pt in checkpoints_style
- but try to exclude obvious training checkpoints like stageX_epochY.pt
"""
files = _list_pt_files(folder)
out: List[str] = []
for f in files:
name = Path(f).name.lower()
# exclude training checkpoints
if ("stage" in name) and ("epoch" in name):
continue
out.append(f)
return out if out else files
def _guess_default_ckpt(files: List[str]) -> Optional[str]:
# prefer stage3_epoch24.pt if present
for f in files:
if Path(f).name.lower() == "stage3_epoch24.pt":
return f
return files[-1] if files else None
def _guess_default_proto(files: List[str]) -> Optional[str]:
# Prefer the strict 90/10 prototype DB if present.
for f in files:
if Path(f).name.lower() == "per_artist_prototypes_90_10_full.pt":
return f
# Otherwise, try to prefer a file with "proto" in name
for f in files:
if "proto" in Path(f).name.lower():
return f
return files[0] if files else None
def _pil_to_tensor(im: Image.Image, T) -> torch.Tensor:
# `T` is torchvision transform pipeline from train_style_ddp.make_val_transforms
return T(im.convert("RGB"))
@dataclass
class State:
lm: Optional[LoadedModel] = None
ckpt_path: Optional[str] = None
db: Optional[PrototypeDB] = None
proto_path: Optional[str] = None
extractor: Optional[AnimeFaceEyeExtractor] = None
APP_STATE = State()
def load_all(ckpt_path: str, proto_path: str, device: str) -> str:
if not ckpt_path:
return "β No checkpoint selected."
if not proto_path:
return "β No prototype DB selected."
# Force CPU on HF Spaces (ZeroGPU doesn't allow CUDA init in main process)
if _ON_SPACES:
device = "cpu"
try:
lm = load_style_model(ckpt_path, device=device)
db = load_prototype_db(proto_path, try_dataset_dir=str(ROOT / "dataset"))
except Exception as e:
return f"β Load failed: {e}"
if db.dim != lm.embed_dim:
return f"β Dim mismatch: model embed_dim={lm.embed_dim} but prototypes dim={db.dim}"
APP_STATE.lm = lm
APP_STATE.ckpt_path = ckpt_path
APP_STATE.db = db
APP_STATE.proto_path = proto_path
# initialize view extractor (whole -> face/eye) with defaults
try:
cfg = ExtractorCfg(
yolo_dir=ROOT / "yolov5_anime",
weights=ROOT / "yolov5x_anime.pt",
cascade=ROOT / "anime-eyes-cascade.xml",
yolo_device="cpu" if _ON_SPACES else ("0" if torch.cuda.is_available() else "cpu"),
)
APP_STATE.extractor = AnimeFaceEyeExtractor(cfg)
except Exception:
APP_STATE.extractor = None
return f"β
Loaded checkpoint `{Path(ckpt_path).name}` (stage={lm.stage_i}) and proto DB `{Path(proto_path).name}` (N={db.centers.shape[0]})"
def classify_and_analyze(
whole_img,
topk: int,
):
"""
Classify and analyze an image in one pass.
Returns: status, table_rows, view_weights_html,
gcam_whole, gcam_face, gcam_eye, face_preview, eye_preview
"""
empty_result = ("", [], "", None, None, None, None, None)
if APP_STATE.lm is None or APP_STATE.db is None:
return ("β Click **Load** first.",) + empty_result[1:]
lm = APP_STATE.lm
db = APP_STATE.db
ex = APP_STATE.extractor
def _to_pil(x):
if x is None:
return None
if isinstance(x, Image.Image):
return x
return Image.fromarray(x)
w = _to_pil(whole_img)
if w is None:
return ("β Provide a whole image.",) + empty_result[1:]
try:
# Extract face and eye
face_pil = None
eye_pil = None
if ex is not None:
rgb = np.array(w.convert("RGB"))
face_rgb, eye_rgb = ex.extract(rgb)
if face_rgb is not None:
face_pil = Image.fromarray(face_rgb)
if eye_rgb is not None:
eye_pil = Image.fromarray(eye_rgb)
# Prepare tensors
wt = _pil_to_tensor(w, lm.T_w)
ft = _pil_to_tensor(face_pil, lm.T_f) if face_pil is not None else None
et = _pil_to_tensor(eye_pil, lm.T_e) if eye_pil is not None else None
# Classification
z = embed_triview(lm, whole=wt, face=ft, eyes=et)
preds = topk_predictions_unique_labels(db, z, topk=int(topk))
rows = [[name, float(score)] for (name, score) in preds]
# Analysis (XGrad-CAM + view weights)
views = {"whole": wt, "face": ft, "eyes": et}
original_images = {"whole": w, "face": face_pil, "eyes": eye_pil}
analysis = analyze_views(lm.model, views, original_images, lm.device)
view_weights_html = format_view_weights_html(analysis)
return (
"β
Done",
rows,
view_weights_html,
analysis.gradcam_heatmaps.get("whole"),
analysis.gradcam_heatmaps.get("face"),
analysis.gradcam_heatmaps.get("eyes"),
face_pil,
eye_pil,
)
except Exception as e:
return (f"β Failed: {e}",) + empty_result[1:]
def list_artists_in_db():
"""
List all artists present in the currently loaded prototype DB.
Returns: status, rows [artist, prototype_count]
"""
if APP_STATE.db is None:
return "β Click **Load** first.", []
db = APP_STATE.db
# Count prototypes per label id
counts: dict[int, int] = {}
for lid in db.labels.detach().cpu().tolist():
counts[int(lid)] = counts.get(int(lid), 0) + 1
rows: list[list] = []
for lid, name in enumerate(db.label_names):
c = int(counts.get(int(lid), 0))
if c > 0:
rows.append([name, c])
rows.sort(key=lambda r: (-int(r[1]), str(r[0]).lower()))
return f"β
{len(rows)} artists in DB (total prototypes: {int(db.centers.shape[0])}).", rows
def _gallery_item_to_pil(item) -> Optional[Image.Image]:
"""Convert a Gradio gallery item to PIL Image (handles various formats)."""
if item is None:
return None
# Already a PIL Image
if isinstance(item, Image.Image):
return item
# Tuple format: (image, caption)
if isinstance(item, (tuple, list)) and len(item) >= 1:
return _gallery_item_to_pil(item[0])
# Dict format: {"image": ..., "caption": ...} or {"name": filepath, ...}
if isinstance(item, dict):
if "image" in item:
return _gallery_item_to_pil(item["image"])
if "name" in item:
return Image.open(item["name"]).convert("RGB")
if "path" in item:
return Image.open(item["path"]).convert("RGB")
# String path
if isinstance(item, str):
return Image.open(item).convert("RGB")
# Numpy array
if isinstance(item, np.ndarray):
return Image.fromarray(item).convert("RGB")
return None
def _kmeans_cosine(Z: torch.Tensor, K: int, iters: int = 20, seed: int = 42) -> torch.Tensor:
"""
K-means clustering in cosine space (CPU only).
Returns K cluster centers (normalized).
"""
Z = torch.nn.functional.normalize(Z, dim=1)
N, D = Z.shape
if N <= K:
return Z.clone()
# Initialize centers randomly
import random
random.seed(seed)
init_idx = random.sample(range(N), K)
C = Z[init_idx].clone()
for _ in range(iters):
# Assign each point to nearest center
sim = Z @ C.t()
assign = sim.argmax(dim=1)
# Recompute centers
new_C = torch.zeros(K, D, dtype=Z.dtype)
counts = torch.zeros(K, dtype=torch.long)
for i, c in enumerate(assign.tolist()):
new_C[c] += Z[i]
counts[c] += 1
# Handle empty clusters
for k in range(K):
if counts[k] == 0:
# Reinitialize from a random point
new_C[k] = Z[random.randint(0, N - 1)]
counts[k] = 1
C = new_C / counts.unsqueeze(1).clamp_min(1).float()
C = torch.nn.functional.normalize(C, dim=1)
return C
def add_prototype(
label_name: str,
images: List,
k_prototypes: int,
n_triplets: int,
) -> str:
"""
Add temporary prototypes using random triplet combinations and K-means clustering.
Similar to the eval process: extract views, create random triplets, embed, cluster.
"""
import random
if APP_STATE.lm is None or APP_STATE.db is None:
return "β Click **Load** first."
lm = APP_STATE.lm
db = APP_STATE.db
ex = APP_STATE.extractor
label_name = (label_name or "").strip()
if not label_name:
return "β Label name is required."
if not images:
return "β Upload at least 1 image."
k_prototypes = max(1, int(k_prototypes))
n_triplets = max(1, int(n_triplets))
# Step 1: Extract whole/face/eye from all uploaded images
wholes: List[Image.Image] = []
faces: List[Image.Image] = []
eyes_list: List[Image.Image] = []
errors: List[str] = []
for i, x in enumerate(images):
try:
im = _gallery_item_to_pil(x)
if im is None:
errors.append(f"Image {i}: could not parse format {type(x)}")
continue
wholes.append(im)
# Extract face and eye
if ex is not None:
rgb = np.array(im.convert("RGB"))
face_rgb, eyes_rgb = ex.extract(rgb)
if face_rgb is not None:
faces.append(Image.fromarray(face_rgb))
if eyes_rgb is not None:
eyes_list.append(Image.fromarray(eyes_rgb))
except Exception as e:
errors.append(f"Image {i}: {e}")
continue
if not wholes:
err_detail = "; ".join(errors[:3]) if errors else "unknown error"
return f"β Could not process any images. Details: {err_detail}"
# Step 2: Create random triplet combinations
# If we have fewer faces/eyes than wholes, we still try to make triplets
triplets: List[Tuple[Image.Image, Optional[Image.Image], Optional[Image.Image]]] = []
for _ in range(n_triplets):
w = random.choice(wholes)
f = random.choice(faces) if faces else None
e = random.choice(eyes_list) if eyes_list else None
triplets.append((w, f, e))
# Step 3: Embed all triplets
zs: List[torch.Tensor] = []
for w, f, e in triplets:
try:
wt = _pil_to_tensor(w, lm.T_w)
ft = _pil_to_tensor(f, lm.T_f) if f is not None else None
et = _pil_to_tensor(e, lm.T_e) if e is not None else None
z = embed_triview(lm, whole=wt, face=ft, eyes=et)
zs.append(z)
except Exception:
continue
if not zs:
return "β Could not embed any triplets."
Z = torch.stack(zs, dim=0)
Z = torch.nn.functional.normalize(Z, dim=1)
# Step 4: Run K-means to get K prototype centers
actual_k = min(k_prototypes, len(zs))
if actual_k < k_prototypes:
# Not enough embeddings for requested K
pass
centers = _kmeans_cosine(Z, actual_k, iters=20, seed=42)
# Step 5: Add all K prototypes to the DB
added_ids = []
for center in centers:
lid = db.add_center(label_name, center)
added_ids.append(lid)
return (
f"β
Added {len(added_ids)} temporary prototype(s) for `{label_name}` "
f"(from {len(wholes)} images, {len(triplets)} triplets, K-means K={actual_k}). "
f"DB now N={db.centers.shape[0]}. "
f"β οΈ Session-only β lost on Space restart."
)
def build_ui() -> gr.Blocks:
ckpts = _list_ckpt_files(CKPT_DIR)
protos = _list_proto_files(CKPT_DIR)
with gr.Blocks(title="ArtistEmbeddingClassifier") as demo:
gr.Markdown("### ArtistEmbeddingClassifier β Gradio UI\nLoads checkpoint + prototype DB from `./checkpoints_style/`.")
with gr.Row():
ckpt_dd = gr.Dropdown(choices=ckpts, value=_guess_default_ckpt(ckpts), label="Checkpoint (.pt)")
proto_dd = gr.Dropdown(choices=protos, value=_guess_default_proto(protos), label="Prototype DB (.pt)")
device_dd = gr.Dropdown(choices=["auto", "cpu"], value="auto", label="Device")
load_btn = gr.Button("Load", variant="primary")
status = gr.Markdown("")
load_btn.click(load_all, inputs=[ckpt_dd, proto_dd, device_dd], outputs=[status])
with gr.Tab("Classify"):
with gr.Row():
with gr.Column(scale=1):
whole = gr.Image(label="Upload image", type="pil")
with gr.Row():
topk = gr.Slider(1, 20, value=5, step=1, label="Top-K")
run_btn = gr.Button("Run", variant="primary")
out_status = gr.Markdown("")
with gr.Column(scale=1):
view_weights_display = gr.HTML(label="View Contribution")
# Classification results
gr.Markdown("### π― Classification Results")
table = gr.Dataframe(headers=["Artist", "Similarity"], datatype=["str", "number"], interactive=False)
# XGrad-CAM heatmaps
gr.Markdown("### π₯ XGrad-CAM Attention Maps")
gr.Markdown("*Where the model focused in each view:*")
with gr.Row():
gcam_whole = gr.Image(label="Whole Image", type="pil")
gcam_face = gr.Image(label="Face", type="pil")
gcam_eye = gr.Image(label="Eye", type="pil")
# Extracted views
gr.Markdown("### ποΈ Auto-Extracted Views")
with gr.Row():
face_prev = gr.Image(label="Detected Face", type="pil")
eye_prev = gr.Image(label="Detected Eye", type="pil")
run_btn.click(
classify_and_analyze,
inputs=[whole, topk],
outputs=[out_status, table, view_weights_display, gcam_whole, gcam_face, gcam_eye, face_prev, eye_prev],
)
with gr.Tab("Add prototype (temporary)"):
gr.Markdown(
"### β οΈ Temporary Prototypes Only\n"
"Add prototypes using random triplet combinations and K-means clustering (same as eval process).\n"
"1. Upload multiple whole images\n"
"2. Face and eye are auto-extracted from each\n"
"3. Random triplets (whole + face + eye) are created\n"
"4. K-means clustering creates K prototype centers\n\n"
"**These prototypes are session-only** β lost when the Space restarts."
)
label = gr.Textbox(label="Label name (artist)", placeholder="e.g. new_artist")
imgs = gr.Gallery(label="Whole images (1+)", columns=4, rows=2, height=240, allow_preview=True)
uploader = gr.Files(label="Upload image files (whole)", file_types=["image"], file_count="multiple")
with gr.Row():
k_proto = gr.Slider(1, 8, value=4, step=1, label="K (prototypes to create)")
n_trips = gr.Slider(4, 64, value=16, step=4, label="N (random triplets to sample)")
add_btn = gr.Button("Add temporary prototypes", variant="primary")
add_status = gr.Markdown("")
def _files_to_gallery(files):
if not files:
return []
out = []
for f in files:
try:
im = Image.open(f.name).convert("RGB")
out.append(im)
except Exception:
continue
return out
uploader.change(_files_to_gallery, inputs=[uploader], outputs=[imgs])
add_btn.click(add_prototype, inputs=[label, imgs, k_proto, n_trips], outputs=[add_status])
with gr.Tab("Artists (in DB)"):
gr.Markdown(
"### Artists in Prototype DB\n"
"Shows which artist labels exist in the currently loaded prototype database "
"(including any temporary prototypes added in this session)."
)
refresh_artists = gr.Button("Refresh", variant="secondary")
artists_status = gr.Markdown("")
artists_table = gr.Dataframe(headers=["Artist", "#Prototypes"], datatype=["str", "number"], interactive=False)
refresh_artists.click(list_artists_in_db, inputs=[], outputs=[artists_status, artists_table])
return demo
if __name__ == "__main__":
CKPT_DIR.mkdir(parents=True, exist_ok=True)
demo = build_ui()
ap = argparse.ArgumentParser(description="ArtistEmbeddingClassifier Gradio UI")
# Hugging Face Spaces runs behind a proxy and expects binding to 0.0.0.0:$PORT.
default_host = os.getenv("GRADIO_SERVER_NAME")
if not default_host:
default_host = "0.0.0.0" if os.getenv("SPACE_ID") or os.getenv("HF_SPACE") else "127.0.0.1"
default_port = int(os.getenv("PORT") or os.getenv("GRADIO_SERVER_PORT") or "7860")
ap.add_argument("--host", type=str, default=default_host)
ap.add_argument("--port", type=int, default=default_port)
ap.add_argument("--share", action="store_true", help="Create a public share link")
args = ap.parse_args()
# Re-apply patch right before launching (in case import order changed).
_patch_fastapi_starlette_middleware_unpack()
try:
_launch_compat(demo, server_name=args.host, server_port=args.port, show_api=False, share=args.share, ssr_mode=False)
except ValueError as e:
# Some environments block localhost checks; fall back to share link.
msg = str(e)
if "localhost is not accessible" in msg and not args.share:
_launch_compat(demo, server_name=args.host, server_port=args.port, show_api=False, share=True, ssr_mode=False)
else:
raise
|