ArtistEmbeddingClassifier / webui_gradio.py
iljung1106
Show all prototype DB .pt files in dropdown
aacdfe6
from __future__ import annotations
import argparse
import os
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
import torch
from PIL import Image
try:
import spaces # Hugging Face Spaces helper package
except Exception: # noqa: BLE001
spaces = None
# Detect if running on HF Spaces (ZeroGPU requires special handling)
_ON_SPACES = bool(os.getenv("SPACE_ID") or os.getenv("HF_SPACE"))
def _patch_fastapi_starlette_middleware_unpack() -> None:
"""
Work around FastAPI/Starlette version mismatches where Starlette's Middleware
iterates as (cls, args, kwargs) but FastAPI expects (cls, options).
The user reported: ValueError: too many values to unpack (expected 2)
in fastapi.applications.FastAPI.build_middleware_stack.
"""
try:
import fastapi.applications as fa
from starlette.middleware import Middleware as StarletteMiddleware
except Exception:
return
# Idempotent: don't patch multiple times.
if getattr(fa.FastAPI.build_middleware_stack, "_aec_patched", False):
return
orig = fa.FastAPI.build_middleware_stack
def patched_build_middleware_stack(self): # noqa: ANN001
# Mostly copied from FastAPI, but with robust handling of Middleware objects.
debug = self.debug
error_handler = None
exception_handlers = {}
if self.exception_handlers:
exception_handlers = self.exception_handlers
error_handler = exception_handlers.get(500) or exception_handlers.get(Exception)
from starlette.middleware.errors import ServerErrorMiddleware
from starlette.middleware.exceptions import ExceptionMiddleware
from fastapi.middleware.asyncexitstack import AsyncExitStackMiddleware
middleware = (
[StarletteMiddleware(ServerErrorMiddleware, handler=error_handler, debug=debug)]
+ self.user_middleware
+ [
StarletteMiddleware(ExceptionMiddleware, handlers=exception_handlers, debug=debug),
StarletteMiddleware(AsyncExitStackMiddleware),
]
)
app = self.router
for m in reversed(middleware):
# Starlette Middleware object
if hasattr(m, "cls") and hasattr(m, "args") and hasattr(m, "kwargs"):
app = m.cls(app=app, *list(m.args), **dict(m.kwargs))
continue
# Old-style tuple/list
if isinstance(m, (tuple, list)):
if len(m) == 2:
cls, options = m
app = cls(app=app, **options)
continue
if len(m) == 3:
cls, args, kwargs = m
app = cls(app=app, *list(args), **dict(kwargs))
continue
# Fallback to original behavior for unexpected types
return orig(self)
return app
patched_build_middleware_stack._aec_patched = True # type: ignore[attr-defined]
fa.FastAPI.build_middleware_stack = patched_build_middleware_stack
_patch_fastapi_starlette_middleware_unpack()
import gradio as gr
if spaces is not None:
# Hugging Face GPU Spaces require at least one @spaces.GPU-decorated function.
# We decorate a tiny no-op marker and also (optionally) wrap inference-heavy calls.
@spaces.GPU
def _spaces_gpu_marker(): # noqa: D401
"""Marker function for Hugging Face GPU Spaces."""
return True
def _launch_compat(demo: gr.Blocks, **kwargs):
"""
Launch Gradio across versions by only passing supported kwargs.
Some versions don't support e.g. `show_api=...`.
"""
import inspect
sig = inspect.signature(demo.launch)
allowed = set(sig.parameters.keys())
safe_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
return demo.launch(**safe_kwargs)
def _patch_gradio_client_bool_jsonschema() -> None:
"""
Work around gradio_client JSON-schema parsing bug where it assumes schema is a dict,
but JSON Schema allows booleans for additionalProperties (true/false).
Error seen:
TypeError: argument of type 'bool' is not iterable
in gradio_client/utils.py:get_type -> if "const" in schema:
"""
try:
import gradio_client.utils as gcu
except Exception:
return
# Idempotent: patch once.
if getattr(getattr(gcu, "get_type", None), "_aec_patched", False):
return
orig_get_type = gcu.get_type
def patched_get_type(schema): # noqa: ANN001
if isinstance(schema, bool):
# additionalProperties: false/true
return "object"
if schema is None:
return "object"
if not isinstance(schema, dict):
return "object"
return orig_get_type(schema)
patched_get_type._aec_patched = True # type: ignore[attr-defined]
gcu.get_type = patched_get_type
# Also patch the deeper helper that assumes schema is always a dict.
orig_inner = getattr(gcu, "_json_schema_to_python_type", None)
if callable(orig_inner) and not getattr(orig_inner, "_aec_patched", False):
def patched_inner(schema, defs=None): # noqa: ANN001
# JSON Schema allows boolean schemas: https://json-schema.org/
if isinstance(schema, bool):
return "typing.Any"
if schema is None:
return "typing.Any"
if not isinstance(schema, dict):
return "typing.Any"
return orig_inner(schema, defs)
patched_inner._aec_patched = True # type: ignore[attr-defined]
gcu._json_schema_to_python_type = patched_inner
_patch_gradio_client_bool_jsonschema()
from app.model_io import LoadedModel, embed_triview, load_style_model
from app.proto_db import PrototypeDB, load_prototype_db, topk_predictions_unique_labels
from app.view_extractor import AnimeFaceEyeExtractor, ExtractorCfg
from app.visualization import ViewAnalysis, analyze_views, format_view_weights_html
ROOT = Path(__file__).resolve().parent
CKPT_DIR = ROOT / "checkpoints_style"
def _list_pt_files(folder: Path) -> List[str]:
if not folder.exists():
return []
return [str(p) for p in sorted(folder.glob("*.pt"))]
def _list_ckpt_files(folder: Path) -> List[str]:
files = _list_pt_files(folder)
# heuristics: training checkpoints usually look like "stageX_epochY.pt"
ckpts = [f for f in files if "stage" in Path(f).name.lower() and "epoch" in Path(f).name.lower()]
return ckpts if ckpts else files
def _list_proto_files(folder: Path) -> List[str]:
"""
List prototype DB candidates.
On Spaces, users may upload prototype DBs with arbitrary names. We therefore:
- include all *.pt in checkpoints_style
- but try to exclude obvious training checkpoints like stageX_epochY.pt
"""
files = _list_pt_files(folder)
out: List[str] = []
for f in files:
name = Path(f).name.lower()
# exclude training checkpoints
if ("stage" in name) and ("epoch" in name):
continue
out.append(f)
return out if out else files
def _guess_default_ckpt(files: List[str]) -> Optional[str]:
# prefer stage3_epoch24.pt if present
for f in files:
if Path(f).name.lower() == "stage3_epoch24.pt":
return f
return files[-1] if files else None
def _guess_default_proto(files: List[str]) -> Optional[str]:
# Prefer the strict 90/10 prototype DB if present.
for f in files:
if Path(f).name.lower() == "per_artist_prototypes_90_10_full.pt":
return f
# Otherwise, try to prefer a file with "proto" in name
for f in files:
if "proto" in Path(f).name.lower():
return f
return files[0] if files else None
def _pil_to_tensor(im: Image.Image, T) -> torch.Tensor:
# `T` is torchvision transform pipeline from train_style_ddp.make_val_transforms
return T(im.convert("RGB"))
@dataclass
class State:
lm: Optional[LoadedModel] = None
ckpt_path: Optional[str] = None
db: Optional[PrototypeDB] = None
proto_path: Optional[str] = None
extractor: Optional[AnimeFaceEyeExtractor] = None
APP_STATE = State()
def load_all(ckpt_path: str, proto_path: str, device: str) -> str:
if not ckpt_path:
return "❌ No checkpoint selected."
if not proto_path:
return "❌ No prototype DB selected."
# Force CPU on HF Spaces (ZeroGPU doesn't allow CUDA init in main process)
if _ON_SPACES:
device = "cpu"
try:
lm = load_style_model(ckpt_path, device=device)
db = load_prototype_db(proto_path, try_dataset_dir=str(ROOT / "dataset"))
except Exception as e:
return f"❌ Load failed: {e}"
if db.dim != lm.embed_dim:
return f"❌ Dim mismatch: model embed_dim={lm.embed_dim} but prototypes dim={db.dim}"
APP_STATE.lm = lm
APP_STATE.ckpt_path = ckpt_path
APP_STATE.db = db
APP_STATE.proto_path = proto_path
# initialize view extractor (whole -> face/eye) with defaults
try:
cfg = ExtractorCfg(
yolo_dir=ROOT / "yolov5_anime",
weights=ROOT / "yolov5x_anime.pt",
cascade=ROOT / "anime-eyes-cascade.xml",
yolo_device="cpu" if _ON_SPACES else ("0" if torch.cuda.is_available() else "cpu"),
)
APP_STATE.extractor = AnimeFaceEyeExtractor(cfg)
except Exception:
APP_STATE.extractor = None
return f"✅ Loaded checkpoint `{Path(ckpt_path).name}` (stage={lm.stage_i}) and proto DB `{Path(proto_path).name}` (N={db.centers.shape[0]})"
def classify_and_analyze(
whole_img,
topk: int,
):
"""
Classify and analyze an image in one pass.
Returns: status, table_rows, view_weights_html,
gcam_whole, gcam_face, gcam_eye, face_preview, eye_preview
"""
empty_result = ("", [], "", None, None, None, None, None)
if APP_STATE.lm is None or APP_STATE.db is None:
return ("❌ Click **Load** first.",) + empty_result[1:]
lm = APP_STATE.lm
db = APP_STATE.db
ex = APP_STATE.extractor
def _to_pil(x):
if x is None:
return None
if isinstance(x, Image.Image):
return x
return Image.fromarray(x)
w = _to_pil(whole_img)
if w is None:
return ("❌ Provide a whole image.",) + empty_result[1:]
try:
# Extract face and eye
face_pil = None
eye_pil = None
if ex is not None:
rgb = np.array(w.convert("RGB"))
face_rgb, eye_rgb = ex.extract(rgb)
if face_rgb is not None:
face_pil = Image.fromarray(face_rgb)
if eye_rgb is not None:
eye_pil = Image.fromarray(eye_rgb)
# Prepare tensors
wt = _pil_to_tensor(w, lm.T_w)
ft = _pil_to_tensor(face_pil, lm.T_f) if face_pil is not None else None
et = _pil_to_tensor(eye_pil, lm.T_e) if eye_pil is not None else None
# Classification
z = embed_triview(lm, whole=wt, face=ft, eyes=et)
preds = topk_predictions_unique_labels(db, z, topk=int(topk))
rows = [[name, float(score)] for (name, score) in preds]
# Analysis (XGrad-CAM + view weights)
views = {"whole": wt, "face": ft, "eyes": et}
original_images = {"whole": w, "face": face_pil, "eyes": eye_pil}
analysis = analyze_views(lm.model, views, original_images, lm.device)
view_weights_html = format_view_weights_html(analysis)
return (
"✅ Done",
rows,
view_weights_html,
analysis.gradcam_heatmaps.get("whole"),
analysis.gradcam_heatmaps.get("face"),
analysis.gradcam_heatmaps.get("eyes"),
face_pil,
eye_pil,
)
except Exception as e:
return (f"❌ Failed: {e}",) + empty_result[1:]
def list_artists_in_db():
"""
List all artists present in the currently loaded prototype DB.
Returns: status, rows [artist, prototype_count]
"""
if APP_STATE.db is None:
return "❌ Click **Load** first.", []
db = APP_STATE.db
# Count prototypes per label id
counts: dict[int, int] = {}
for lid in db.labels.detach().cpu().tolist():
counts[int(lid)] = counts.get(int(lid), 0) + 1
rows: list[list] = []
for lid, name in enumerate(db.label_names):
c = int(counts.get(int(lid), 0))
if c > 0:
rows.append([name, c])
rows.sort(key=lambda r: (-int(r[1]), str(r[0]).lower()))
return f"✅ {len(rows)} artists in DB (total prototypes: {int(db.centers.shape[0])}).", rows
def _gallery_item_to_pil(item) -> Optional[Image.Image]:
"""Convert a Gradio gallery item to PIL Image (handles various formats)."""
if item is None:
return None
# Already a PIL Image
if isinstance(item, Image.Image):
return item
# Tuple format: (image, caption)
if isinstance(item, (tuple, list)) and len(item) >= 1:
return _gallery_item_to_pil(item[0])
# Dict format: {"image": ..., "caption": ...} or {"name": filepath, ...}
if isinstance(item, dict):
if "image" in item:
return _gallery_item_to_pil(item["image"])
if "name" in item:
return Image.open(item["name"]).convert("RGB")
if "path" in item:
return Image.open(item["path"]).convert("RGB")
# String path
if isinstance(item, str):
return Image.open(item).convert("RGB")
# Numpy array
if isinstance(item, np.ndarray):
return Image.fromarray(item).convert("RGB")
return None
def _kmeans_cosine(Z: torch.Tensor, K: int, iters: int = 20, seed: int = 42) -> torch.Tensor:
"""
K-means clustering in cosine space (CPU only).
Returns K cluster centers (normalized).
"""
Z = torch.nn.functional.normalize(Z, dim=1)
N, D = Z.shape
if N <= K:
return Z.clone()
# Initialize centers randomly
import random
random.seed(seed)
init_idx = random.sample(range(N), K)
C = Z[init_idx].clone()
for _ in range(iters):
# Assign each point to nearest center
sim = Z @ C.t()
assign = sim.argmax(dim=1)
# Recompute centers
new_C = torch.zeros(K, D, dtype=Z.dtype)
counts = torch.zeros(K, dtype=torch.long)
for i, c in enumerate(assign.tolist()):
new_C[c] += Z[i]
counts[c] += 1
# Handle empty clusters
for k in range(K):
if counts[k] == 0:
# Reinitialize from a random point
new_C[k] = Z[random.randint(0, N - 1)]
counts[k] = 1
C = new_C / counts.unsqueeze(1).clamp_min(1).float()
C = torch.nn.functional.normalize(C, dim=1)
return C
def add_prototype(
label_name: str,
images: List,
k_prototypes: int,
n_triplets: int,
) -> str:
"""
Add temporary prototypes using random triplet combinations and K-means clustering.
Similar to the eval process: extract views, create random triplets, embed, cluster.
"""
import random
if APP_STATE.lm is None or APP_STATE.db is None:
return "❌ Click **Load** first."
lm = APP_STATE.lm
db = APP_STATE.db
ex = APP_STATE.extractor
label_name = (label_name or "").strip()
if not label_name:
return "❌ Label name is required."
if not images:
return "❌ Upload at least 1 image."
k_prototypes = max(1, int(k_prototypes))
n_triplets = max(1, int(n_triplets))
# Step 1: Extract whole/face/eye from all uploaded images
wholes: List[Image.Image] = []
faces: List[Image.Image] = []
eyes_list: List[Image.Image] = []
errors: List[str] = []
for i, x in enumerate(images):
try:
im = _gallery_item_to_pil(x)
if im is None:
errors.append(f"Image {i}: could not parse format {type(x)}")
continue
wholes.append(im)
# Extract face and eye
if ex is not None:
rgb = np.array(im.convert("RGB"))
face_rgb, eyes_rgb = ex.extract(rgb)
if face_rgb is not None:
faces.append(Image.fromarray(face_rgb))
if eyes_rgb is not None:
eyes_list.append(Image.fromarray(eyes_rgb))
except Exception as e:
errors.append(f"Image {i}: {e}")
continue
if not wholes:
err_detail = "; ".join(errors[:3]) if errors else "unknown error"
return f"❌ Could not process any images. Details: {err_detail}"
# Step 2: Create random triplet combinations
# If we have fewer faces/eyes than wholes, we still try to make triplets
triplets: List[Tuple[Image.Image, Optional[Image.Image], Optional[Image.Image]]] = []
for _ in range(n_triplets):
w = random.choice(wholes)
f = random.choice(faces) if faces else None
e = random.choice(eyes_list) if eyes_list else None
triplets.append((w, f, e))
# Step 3: Embed all triplets
zs: List[torch.Tensor] = []
for w, f, e in triplets:
try:
wt = _pil_to_tensor(w, lm.T_w)
ft = _pil_to_tensor(f, lm.T_f) if f is not None else None
et = _pil_to_tensor(e, lm.T_e) if e is not None else None
z = embed_triview(lm, whole=wt, face=ft, eyes=et)
zs.append(z)
except Exception:
continue
if not zs:
return "❌ Could not embed any triplets."
Z = torch.stack(zs, dim=0)
Z = torch.nn.functional.normalize(Z, dim=1)
# Step 4: Run K-means to get K prototype centers
actual_k = min(k_prototypes, len(zs))
if actual_k < k_prototypes:
# Not enough embeddings for requested K
pass
centers = _kmeans_cosine(Z, actual_k, iters=20, seed=42)
# Step 5: Add all K prototypes to the DB
added_ids = []
for center in centers:
lid = db.add_center(label_name, center)
added_ids.append(lid)
return (
f"✅ Added {len(added_ids)} temporary prototype(s) for `{label_name}` "
f"(from {len(wholes)} images, {len(triplets)} triplets, K-means K={actual_k}). "
f"DB now N={db.centers.shape[0]}. "
f"⚠️ Session-only — lost on Space restart."
)
def build_ui() -> gr.Blocks:
ckpts = _list_ckpt_files(CKPT_DIR)
protos = _list_proto_files(CKPT_DIR)
with gr.Blocks(title="ArtistEmbeddingClassifier") as demo:
gr.Markdown("### ArtistEmbeddingClassifier — Gradio UI\nLoads checkpoint + prototype DB from `./checkpoints_style/`.")
with gr.Row():
ckpt_dd = gr.Dropdown(choices=ckpts, value=_guess_default_ckpt(ckpts), label="Checkpoint (.pt)")
proto_dd = gr.Dropdown(choices=protos, value=_guess_default_proto(protos), label="Prototype DB (.pt)")
device_dd = gr.Dropdown(choices=["auto", "cpu"], value="auto", label="Device")
load_btn = gr.Button("Load", variant="primary")
status = gr.Markdown("")
load_btn.click(load_all, inputs=[ckpt_dd, proto_dd, device_dd], outputs=[status])
with gr.Tab("Classify"):
with gr.Row():
with gr.Column(scale=1):
whole = gr.Image(label="Upload image", type="pil")
with gr.Row():
topk = gr.Slider(1, 20, value=5, step=1, label="Top-K")
run_btn = gr.Button("Run", variant="primary")
out_status = gr.Markdown("")
with gr.Column(scale=1):
view_weights_display = gr.HTML(label="View Contribution")
# Classification results
gr.Markdown("### 🎯 Classification Results")
table = gr.Dataframe(headers=["Artist", "Similarity"], datatype=["str", "number"], interactive=False)
# XGrad-CAM heatmaps
gr.Markdown("### 🔥 XGrad-CAM Attention Maps")
gr.Markdown("*Where the model focused in each view:*")
with gr.Row():
gcam_whole = gr.Image(label="Whole Image", type="pil")
gcam_face = gr.Image(label="Face", type="pil")
gcam_eye = gr.Image(label="Eye", type="pil")
# Extracted views
gr.Markdown("### 👁️ Auto-Extracted Views")
with gr.Row():
face_prev = gr.Image(label="Detected Face", type="pil")
eye_prev = gr.Image(label="Detected Eye", type="pil")
run_btn.click(
classify_and_analyze,
inputs=[whole, topk],
outputs=[out_status, table, view_weights_display, gcam_whole, gcam_face, gcam_eye, face_prev, eye_prev],
)
with gr.Tab("Add prototype (temporary)"):
gr.Markdown(
"### ⚠️ Temporary Prototypes Only\n"
"Add prototypes using random triplet combinations and K-means clustering (same as eval process).\n"
"1. Upload multiple whole images\n"
"2. Face and eye are auto-extracted from each\n"
"3. Random triplets (whole + face + eye) are created\n"
"4. K-means clustering creates K prototype centers\n\n"
"**These prototypes are session-only** — lost when the Space restarts."
)
label = gr.Textbox(label="Label name (artist)", placeholder="e.g. new_artist")
imgs = gr.Gallery(label="Whole images (1+)", columns=4, rows=2, height=240, allow_preview=True)
uploader = gr.Files(label="Upload image files (whole)", file_types=["image"], file_count="multiple")
with gr.Row():
k_proto = gr.Slider(1, 8, value=4, step=1, label="K (prototypes to create)")
n_trips = gr.Slider(4, 64, value=16, step=4, label="N (random triplets to sample)")
add_btn = gr.Button("Add temporary prototypes", variant="primary")
add_status = gr.Markdown("")
def _files_to_gallery(files):
if not files:
return []
out = []
for f in files:
try:
im = Image.open(f.name).convert("RGB")
out.append(im)
except Exception:
continue
return out
uploader.change(_files_to_gallery, inputs=[uploader], outputs=[imgs])
add_btn.click(add_prototype, inputs=[label, imgs, k_proto, n_trips], outputs=[add_status])
with gr.Tab("Artists (in DB)"):
gr.Markdown(
"### Artists in Prototype DB\n"
"Shows which artist labels exist in the currently loaded prototype database "
"(including any temporary prototypes added in this session)."
)
refresh_artists = gr.Button("Refresh", variant="secondary")
artists_status = gr.Markdown("")
artists_table = gr.Dataframe(headers=["Artist", "#Prototypes"], datatype=["str", "number"], interactive=False)
refresh_artists.click(list_artists_in_db, inputs=[], outputs=[artists_status, artists_table])
return demo
if __name__ == "__main__":
CKPT_DIR.mkdir(parents=True, exist_ok=True)
demo = build_ui()
ap = argparse.ArgumentParser(description="ArtistEmbeddingClassifier Gradio UI")
# Hugging Face Spaces runs behind a proxy and expects binding to 0.0.0.0:$PORT.
default_host = os.getenv("GRADIO_SERVER_NAME")
if not default_host:
default_host = "0.0.0.0" if os.getenv("SPACE_ID") or os.getenv("HF_SPACE") else "127.0.0.1"
default_port = int(os.getenv("PORT") or os.getenv("GRADIO_SERVER_PORT") or "7860")
ap.add_argument("--host", type=str, default=default_host)
ap.add_argument("--port", type=int, default=default_port)
ap.add_argument("--share", action="store_true", help="Create a public share link")
args = ap.parse_args()
# Re-apply patch right before launching (in case import order changed).
_patch_fastapi_starlette_middleware_unpack()
try:
_launch_compat(demo, server_name=args.host, server_port=args.port, show_api=False, share=args.share, ssr_mode=False)
except ValueError as e:
# Some environments block localhost checks; fall back to share link.
msg = str(e)
if "localhost is not accessible" in msg and not args.share:
_launch_compat(demo, server_name=args.host, server_port=args.port, show_api=False, share=True, ssr_mode=False)
else:
raise