Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import math | |
| from copy import deepcopy | |
| from pathlib import Path | |
| import torch | |
| import torch.nn as nn | |
| from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat | |
| from models.experimental import MixConv2d, CrossConv, C3 | |
| from utils.general import check_anchor_order, make_divisible, check_file | |
| from utils.torch_utils import ( | |
| time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device) | |
| class Detect(nn.Module): | |
| def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
| super(Detect, self).__init__() | |
| self.stride = None # strides computed during build | |
| self.nc = nc # number of classes | |
| self.no = nc + 5 # number of outputs per anchor | |
| self.nl = len(anchors) # number of detection layers | |
| self.na = len(anchors[0]) // 2 # number of anchors | |
| self.grid = [torch.zeros(1)] * self.nl # init grid | |
| a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
| self.register_buffer('anchors', a) # shape(nl,na,2) | |
| self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
| self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
| self.export = False # onnx export | |
| def forward(self, x): | |
| # x = x.copy() # for profiling | |
| z = [] # inference output | |
| self.training |= self.export | |
| for i in range(self.nl): | |
| x[i] = self.m[i](x[i]) # conv | |
| bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
| x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
| if not self.training: # inference | |
| if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
| self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
| y = x[i].sigmoid() | |
| y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy | |
| y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
| z.append(y.view(bs, -1, self.no)) | |
| return x if self.training else (torch.cat(z, 1), x) | |
| def _make_grid(nx=20, ny=20): | |
| yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
| return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
| class Model(nn.Module): | |
| def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes | |
| super(Model, self).__init__() | |
| if isinstance(cfg, dict): | |
| self.yaml = cfg # model dict | |
| else: # is *.yaml | |
| import yaml # for torch hub | |
| self.yaml_file = Path(cfg).name | |
| with open(cfg) as f: | |
| self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
| # Define model | |
| if nc and nc != self.yaml['nc']: | |
| print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc)) | |
| self.yaml['nc'] = nc # override yaml value | |
| self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out | |
| # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |
| # Build strides, anchors | |
| m = self.model[-1] # Detect() | |
| if isinstance(m, Detect): | |
| s = 128 # 2x min stride | |
| m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |
| m.anchors /= m.stride.view(-1, 1, 1) | |
| check_anchor_order(m) | |
| self.stride = m.stride | |
| self._initialize_biases() # only run once | |
| # print('Strides: %s' % m.stride.tolist()) | |
| # Init weights, biases | |
| initialize_weights(self) | |
| self.info() | |
| print('') | |
| def forward(self, x, augment=False, profile=False): | |
| if augment: | |
| img_size = x.shape[-2:] # height, width | |
| s = [1, 0.83, 0.67] # scales | |
| f = [None, 3, None] # flips (2-ud, 3-lr) | |
| y = [] # outputs | |
| for si, fi in zip(s, f): | |
| xi = scale_img(x.flip(fi) if fi else x, si) | |
| yi = self.forward_once(xi)[0] # forward | |
| # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |
| yi[..., :4] /= si # de-scale | |
| if fi == 2: | |
| yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |
| elif fi == 3: | |
| yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |
| y.append(yi) | |
| return torch.cat(y, 1), None # augmented inference, train | |
| else: | |
| return self.forward_once(x, profile) # single-scale inference, train | |
| def forward_once(self, x, profile=False): | |
| y, dt = [], [] # outputs | |
| for m in self.model: | |
| if m.f != -1: # if not from previous layer | |
| x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |
| if profile: | |
| try: | |
| import thop | |
| o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS | |
| except: | |
| o = 0 | |
| t = time_synchronized() | |
| for _ in range(10): | |
| _ = m(x) | |
| dt.append((time_synchronized() - t) * 100) | |
| print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |
| x = m(x) # run | |
| y.append(x if m.i in self.save else None) # save output | |
| if profile: | |
| print('%.1fms total' % sum(dt)) | |
| return x | |
| def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |
| # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
| m = self.model[-1] # Detect() module | |
| for mi, s in zip(m.m, m.stride): # from | |
| b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
| b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
| b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
| mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
| def _print_biases(self): | |
| m = self.model[-1] # Detect() module | |
| for mi in m.m: # from | |
| b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |
| print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |
| # def _print_weights(self): | |
| # for m in self.model.modules(): | |
| # if type(m) is Bottleneck: | |
| # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |
| def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |
| print('Fusing layers... ', end='') | |
| for m in self.model.modules(): | |
| if type(m) is Conv: | |
| m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability | |
| m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |
| m.bn = None # remove batchnorm | |
| m.forward = m.fuseforward # update forward | |
| self.info() | |
| return self | |
| def info(self): # print model information | |
| model_info(self) | |
| def parse_model(d, ch): # model_dict, input_channels(3) | |
| print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |
| anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |
| na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |
| no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
| layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
| for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |
| m = eval(m) if isinstance(m, str) else m # eval strings | |
| for j, a in enumerate(args): | |
| try: | |
| args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
| except: | |
| pass | |
| n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
| if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: | |
| c1, c2 = ch[f], args[0] | |
| # Normal | |
| # if i > 0 and args[0] != no: # channel expansion factor | |
| # ex = 1.75 # exponential (default 2.0) | |
| # e = math.log(c2 / ch[1]) / math.log(2) | |
| # c2 = int(ch[1] * ex ** e) | |
| # if m != Focus: | |
| c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 | |
| # Experimental | |
| # if i > 0 and args[0] != no: # channel expansion factor | |
| # ex = 1 + gw # exponential (default 2.0) | |
| # ch1 = 32 # ch[1] | |
| # e = math.log(c2 / ch1) / math.log(2) # level 1-n | |
| # c2 = int(ch1 * ex ** e) | |
| # if m != Focus: | |
| # c2 = make_divisible(c2, 8) if c2 != no else c2 | |
| args = [c1, c2, *args[1:]] | |
| if m in [BottleneckCSP, C3]: | |
| args.insert(2, n) | |
| n = 1 | |
| elif m is nn.BatchNorm2d: | |
| args = [ch[f]] | |
| elif m is Concat: | |
| c2 = sum([ch[-1 if x == -1 else x + 1] for x in f]) | |
| elif m is Detect: | |
| args.append([ch[x + 1] for x in f]) | |
| if isinstance(args[1], int): # number of anchors | |
| args[1] = [list(range(args[1] * 2))] * len(f) | |
| else: | |
| c2 = ch[f] | |
| m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |
| t = str(m)[8:-2].replace('__main__.', '') # module type | |
| np = sum([x.numel() for x in m_.parameters()]) # number params | |
| m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |
| print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |
| save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |
| layers.append(m_) | |
| ch.append(c2) | |
| return nn.Sequential(*layers), sorted(save) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') | |
| parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
| opt = parser.parse_args() | |
| opt.cfg = check_file(opt.cfg) # check file | |
| device = select_device(opt.device) | |
| # Create model | |
| model = Model(opt.cfg).to(device) | |
| model.train() | |
| # Profile | |
| # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) | |
| # y = model(img, profile=True) | |
| # ONNX export | |
| # model.model[-1].export = True | |
| # torch.onnx.export(model, img, opt.cfg.replace('.yaml', '.onnx'), verbose=True, opset_version=11) | |
| # Tensorboard | |
| # from torch.utils.tensorboard import SummaryWriter | |
| # tb_writer = SummaryWriter() | |
| # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") | |
| # tb_writer.add_graph(model.model, img) # add model to tensorboard | |
| # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard | |