Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| import json | |
| import logging | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
| from huggingface_hub import login | |
| from diffusers.utils import load_image | |
| #from lora_loading_patch import load_lora_into_transformer | |
| import time | |
| from datetime import datetime | |
| from io import BytesIO | |
| import torch.nn.functional as F | |
| from PIL import Image, ImageFilter | |
| import time | |
| import boto3 | |
| from io import BytesIO | |
| import re | |
| import json | |
| import random | |
| import string | |
| from diffusers import FluxPipeline | |
| from huggingface_hub import hf_hub_download | |
| from diffusers.quantizers import PipelineQuantizationConfig | |
| from diffusers import (FluxPriorReduxPipeline, FluxInpaintPipeline, FluxFillPipeline, FluxKontextPipeline, FluxPipeline) | |
| # Login Hugging Face Hub | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| login(token=HF_TOKEN) | |
| import diffusers | |
| # init | |
| dtype = torch.bfloat16 | |
| device = "cuda:0" | |
| base_model = "black-forest-labs/FLUX.1-Krea-dev" | |
| # pipeline_quant_config = PipelineQuantizationConfig( | |
| # quant_backend="bitsandbytes_4bit", | |
| # quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16}, | |
| # components_to_quantize=["transformer", "text_encoder_2"], | |
| # ) | |
| txt2img_pipe = FluxKontextPipeline.from_pretrained(base_model, torch_dtype=dtype) | |
| txt2img_pipe = txt2img_pipe.to(device) | |
| MAX_SEED = 2**32 - 1 | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) | |
| print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def safe_trim_for_clip(text: str, max_words: int = 77) -> str: | |
| # 简单按词裁,不破坏主 prompt。你也可以做更智能的关键词抽取。 | |
| tokens = re.split(r"\s+", text.strip()) | |
| if len(tokens) <= max_words: | |
| return text | |
| return " ".join(tokens[:max_words]) | |
| def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): | |
| with calculateDuration("Upload images"): | |
| connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" | |
| s3 = boto3.client( | |
| 's3', | |
| endpoint_url=connectionUrl, | |
| region_name='auto', | |
| aws_access_key_id=access_key, | |
| aws_secret_access_key=secret_key | |
| ) | |
| current_time = datetime.now().strftime("%Y/%m/%d/%H/%M/%S") | |
| image_file = f"generated_images/{current_time}/{random.randint(0, MAX_SEED)}.png" | |
| buffer = BytesIO() | |
| image.save(buffer, "PNG") | |
| buffer.seek(0) | |
| s3.upload_fileobj(buffer, bucket_name, image_file) | |
| print("upload finish", image_file) | |
| # start to generate thumbnail | |
| thumbnail = image.copy() | |
| thumbnail_width = 256 | |
| aspect_ratio = image.height / image.width | |
| thumbnail_height = int(thumbnail_width * aspect_ratio) | |
| thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS) | |
| # Generate the thumbnail image filename | |
| thumbnail_file = image_file.replace(".png", "_thumbnail.png") | |
| # Save thumbnail to buffer and upload | |
| thumbnail_buffer = BytesIO() | |
| thumbnail.save(thumbnail_buffer, "PNG") | |
| thumbnail_buffer.seek(0) | |
| s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file) | |
| print("upload thumbnail finish", thumbnail_file) | |
| return image_file | |
| def generate_random_4_digit_string(): | |
| return ''.join(random.choices(string.digits, k=4)) | |
| def run_lora( | |
| prompt, | |
| image_url, | |
| lora_strings_json, | |
| image_strength, | |
| cfg_scale, | |
| steps, | |
| randomize_seed, | |
| seed, | |
| width, | |
| height, | |
| upload_to_r2, | |
| account_id, | |
| access_key, | |
| secret_key, | |
| bucket, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height) | |
| gr.Info("Starting process") | |
| pipe = txt2img_pipe | |
| device = pipe.device | |
| print(device) | |
| # ========== Seed ========== | |
| if randomize_seed: | |
| with calculateDuration("Set random seed"): | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # ========== LoRA ========== | |
| gr.Info("Start to load LoRA ...") | |
| with calculateDuration("Unloading LoRA"): | |
| try: | |
| pipe.unload_lora_weights() | |
| except Exception as _: | |
| # 某些版本上未加载时调用可能抛异常,忽略 | |
| pass | |
| adapter_names = [] | |
| adapter_weights = [] | |
| if lora_strings_json: | |
| try: | |
| lora_configs = json.loads(lora_strings_json) | |
| except Exception as _: | |
| lora_configs = None | |
| gr.Warning("Parse lora config json failed") | |
| print("parse lora config json failed") | |
| if lora_configs: | |
| with calculateDuration("Loading LoRA weights"): | |
| for lora_info in lora_configs: | |
| repo = lora_info.get("repo") | |
| weights = lora_info.get("weights") | |
| # 优先使用用户提供的 adapter_name;没有则随机 | |
| adapter_name = lora_info.get("adapter_name") or f"adp_{generate_random_4_digit_string()}" | |
| weight = float(lora_info.get("adapter_weight", 1.0)) | |
| if not (repo and weights): | |
| print(f"skip invalid lora entry: {lora_info}") | |
| continue | |
| try: | |
| weight_path = hf_hub_download(repo_id=repo, filename=weights) | |
| # 关键修复:prefix=None,避免仅在 text_encoder 查找 | |
| pipe.load_lora_weights(weight_path, adapter_name=adapter_name, prefix=None) | |
| adapter_names.append(adapter_name) | |
| adapter_weights.append(weight) | |
| except Exception as e: | |
| print(f"load lora error for {repo}/{weights}: {e}") | |
| if adapter_names: | |
| pipe.set_adapters(adapter_names, adapter_weights=adapter_weights) | |
| # 可选:融合后推理更快,但无法动态调整权重 | |
| # pipe.fuse_lora(adapter_names=adapter_names) | |
| try: | |
| active = pipe.get_active_adapters() if hasattr(pipe, "get_active_adapters") else [] | |
| print("Active adapters:", active) | |
| except Exception as e: | |
| print("Active adapters query failed:", e) | |
| lora_layer_count = 0 | |
| for name, module in pipe.transformer.named_modules(): | |
| attrs = dir(module) | |
| if any(a.startswith("lora_") for a in attrs) or "lora" in module.__class__.__name__.lower(): | |
| lora_layer_count += 1 | |
| print(f"[DEBUG] transformer LoRA layers: {lora_layer_count}") | |
| # 若层数为 0,给出直观警告 | |
| if lora_layer_count == 0: | |
| gr.Warning("LoRA seems not injected (0 layers on transformer). Check whether the LoRA is trained for FLUX and `prefix=None` is set.") | |
| pipe.enable_vae_slicing() | |
| clip_side_prompt = safe_trim_for_clip(prompt, max_words=77) | |
| init_image = None | |
| error_message = "" | |
| try: | |
| gr.Info("Start to generate images ...") | |
| joint_attention_kwargs = {"scale": 1} | |
| image = pipe( | |
| prompt=prompt, | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(cfg_scale), | |
| width=int(width), | |
| height=int(height), | |
| max_sequence_length=512, | |
| generator=generator, | |
| joint_attention_kwargs=joint_attention_kwargs | |
| ).images[0] | |
| except Exception as e: | |
| error_message = str(e) | |
| gr.Error(error_message) | |
| print("fatal error", e) | |
| image = None | |
| result = {"status": "failed", "message": error_message} if image is None else {"status": "success", "message": "Image generated but not uploaded"} | |
| if image is not None and upload_to_r2: | |
| try: | |
| url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket) | |
| result = {"status": "success", "message": "upload image success", "url": url} | |
| except Exception as e: | |
| err = f"Upload failed: {e}" | |
| gr.Warning(err) | |
| print(err) | |
| result = {"status": "success", "message": "generated but upload failed"} | |
| gr.Info("Completed!") | |
| progress(100, "Completed!") | |
| return json.dumps(result) | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("flux-dev-multi-lora") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10) | |
| lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5) | |
| image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
| upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) | |
| account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") | |
| access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") | |
| secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") | |
| bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") | |
| with gr.Column(): | |
| json_text = gr.Text(label="Result JSON") | |
| gr.Markdown("**Disclaimer:**") | |
| gr.Markdown( | |
| "This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user." | |
| ) | |
| inputs = [ | |
| prompt, | |
| image_url, | |
| lora_strings_json, | |
| image_strength, | |
| cfg_scale, | |
| steps, | |
| randomize_seed, | |
| seed, | |
| width, | |
| height, | |
| upload_to_r2, | |
| account_id, | |
| access_key, | |
| secret_key, | |
| bucket | |
| ] | |
| outputs = [json_text] | |
| run_button.click( | |
| fn=run_lora, | |
| inputs=inputs, | |
| outputs=outputs | |
| ) | |
| try: | |
| demo.queue().launch() | |
| except: | |
| print("demo exception ...") |