File size: 10,002 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94421ed
 
2cda712
 
 
 
 
 
 
 
 
 
 
94421ed
d9c7b8a
94421ed
 
 
 
 
 
 
 
 
2cda712
d9c7b8a
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
PyTorch Lightning Module of training of deep-learning models

Notes:
- Using ".to(torch.float32)" to resolving precision issues while using different models.
"""

# Importing Libraries
import numpy as np
from sklearn.model_selection import train_test_split

import torch
torch.set_float32_matmul_precision('medium')
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import torchmetrics
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers as pl_loggers

import torch
torch.set_float32_matmul_precision('medium')
import os, sys, warnings
warnings.filterwarnings("ignore")
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from yaml import safe_load
from functions.dataset import Image_Dataset
import functions.preprocess as preprocess
from functions.loss_optimizers_metrics import *
import functions.utils as utils
import functions.module as module
import defaults


# Lightning Module
class Model_LightningModule(pl.LightningModule):
	def __init__(self, classifier, config):
		super().__init__()
		self.save_hyperparameters()
		self.config = config

		# Model as Manual Arguments
		self.classifier = classifier

		# Loss
		self.train_lossfn = get_loss_function(**self.config["train_loss_fn"])
		self.val_lossfn = get_loss_function(**self.config["val_loss_fn"])

		# Metrics
		self.train_accuracy_fn = torchmetrics.Accuracy(task="binary")
		self.val_accuracy_fn = torchmetrics.Accuracy(task="binary")


	# Training-Step
	def training_step(self, batch, batch_idx):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)
		
		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)

		self.train_loss = self.train_lossfn(latent_features, y_pred, y_true_classes)
		self.train_acc = self.train_accuracy_fn(y_pred_classes, y_true_classes)

		self.log_dict(
			{
				"train_loss": self.train_loss,
				"train_acc": self.train_acc
			}, 
			on_step=True, on_epoch=False, prog_bar=True, sync_dist=True
		)

		return self.train_loss


	# Validation-Step
	def validation_step(self, batch, batch_idx, dataloader_idx=0):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)

		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)

		self.val_loss = self.val_lossfn(latent_features, y_pred, y_true_classes)
		self.val_acc = self.val_accuracy_fn(y_pred_classes, y_true_classes)

		self.log_dict(
			{
				"val_loss": self.val_loss,
				"val_acc": self.val_acc,
			},
			on_step=False, on_epoch=True, prog_bar=True, sync_dist=True
		)


	# Prediction-Step
	def predict_step(self, batch, batch_idx, dataloader_idx=0):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)

		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)
		
		return y_pred, y_true


	# Configure Optimizers
	def configure_optimizers(self):
		optimizer = get_optimizer(
			self.classifier.parameters(),
			**self.config["optimizer"]
		)
		
		return [optimizer]



# Main Function
def run_on_images(feature_extractor, classifier, config, test_real_images_paths, test_fake_images_paths, preprocess_settings, best_threshold, verbose=True):

	# Parameters
	dataset_type = config["dataset"]["dataset_type"]
	separateAugmentation = config["dataset"]["separateAugmentation"]
	model_name = config["dataset"]["model_name"]
	f_model_name = config["dataset"]["f_model_name"]


	# Paths
	main_dataset_dir = defaults.main_dataset_dir
	main_checkpoints_dir = defaults.main_checkpoints_dir


	# Checkpoints Paths
	# Resume Checkpoints
	if config["checkpoints"]["resume_dirname"] is not None and config["checkpoints"]["resume_filename"] is not None:
		resume_ckpt_path = os.path.join(main_checkpoints_dir, config["checkpoints"]["resume_dirname"], f_model_name, config["checkpoints"]["resume_filename"])
	else:
		resume_ckpt_path = None

	print (resume_ckpt_path)

	# Save Checkpoints
	checkpoint_dirpath = os.path.join(main_checkpoints_dir, config["checkpoints"]["checkpoint_dirname"], f_model_name)
	os.makedirs(checkpoint_dirpath, exist_ok=True)


	# Resuming from checkpoint
	if resume_ckpt_path is not None:
		if os.path.exists(resume_ckpt_path):
			print ("Found the checkpoint at resume_ckpt_path provided.")
		else:
			assert False, "Resume checkpoint not found at resume_ckpt_path provided."
	else:
		if config["train_settings"]["train"]:
			# For Training.
			print ("No path is provided for resume checkpoint (resume_ckpt_path) provided. Starting training from the begining.")
		else:
			assert False, "No path is provided for resume checkpoint (resume_ckpt_path) provided. resume_ckpt_path is required for evaluation."


	# Checkpoint Callbacks
	best_checkpoint_callback = ModelCheckpoint(
		dirpath=checkpoint_dirpath,
		filename="best_model",
		monitor=config["train_settings"]["monitor"],
		mode=config["train_settings"]["mode"]
	)


	# Pre-processing Functions
	preprocessfn, dual_scale = preprocess.get_preprocessfn(**preprocess_settings)

	# Logging
	print ()
	print (preprocessfn)
	print ()


	# Datasets
	# Images Test Dataset
	if config["train_settings"]["train"] == False:
		# For images smaller than preprocess_settings["input_image_dimensions"] which only occur for BigGAN fake images in GenImage dataset, we do the following:
		"""
		- During inference, we avoid Resizing to reduce the effect of resizing artifacts.
		- We process the images at (224,224) or their smaller resolution unless the feature extraction model requires (224,224) inputs.
		"""

		if model_name == "resnet50" or model_name == "hyperiqa" or model_name == "tres" or model_name == "clip-resnet50" or model_name == "clip-vit-l-14":
			# Updated Pre-Processing Settings
			Fixed_Input_preprocess_settings = preprocess_settings.copy()
			Fixed_Input_preprocess_settings["input_image_dimensions"] = (224,224)

			# Preprocessing Function
			Fixed_Input_preprocessfn, Fixed_Input_dual_scale = preprocess.get_preprocessfn(**Fixed_Input_preprocess_settings)

			Test_Dataset = Image_Dataset(
				real_images_paths=test_real_images_paths,
				fake_images_paths=test_fake_images_paths,
				preprocessfn=Fixed_Input_preprocessfn,
				dual_scale=Fixed_Input_dual_scale,
				resize=preprocess_settings["resize"],
				separateAugmentation=separateAugmentation
			)

		else:
			Test_Dataset = Image_Dataset(
				real_images_paths=test_real_images_paths,
				fake_images_paths=test_fake_images_paths,
				preprocessfn=preprocessfn,
				dual_scale=dual_scale,
				resize=preprocess_settings["resize"],
				separateAugmentation=separateAugmentation
			)


	# DataLoaders
	# Test DataLoaders
	if config["train_settings"]["train"] == False:
		Test_Dataloader = DataLoader(
			dataset=Test_Dataset,
			batch_size=config["train_settings"]["batch_size"],
			num_workers=config["train_settings"]["num_workers"],
			shuffle=False,
		)


	print ("-"*25 + " Datasets and DataLoaders Ready " + "-"*25)


	# Global Variables: (feature_extractor)
	global feature_extractor_module
	feature_extractor_module = feature_extractor
	# Detect device from feature extractor (it's already on the correct device)
	device = next(feature_extractor_module.parameters()).device
	feature_extractor_module.eval()
	for params in feature_extractor_module.parameters():
		params.requires_grad = False




	# Lightning Module
	Model = Model_LightningModule(classifier, config)

	# PyTorch Lightning Trainer
	# Override accelerator based on detected device
	trainer_config = config["trainer"].copy()
	if device.type == "mps":
		trainer_config["accelerator"] = "mps"
		trainer_config["devices"] = 1
	elif device.type == "cuda":
		trainer_config["accelerator"] = "cuda"
		trainer_config["devices"] = [device.index] if device.index is not None else [0]
	else:  # cpu
		trainer_config["accelerator"] = "cpu"
		trainer_config["devices"] = 1
	trainer = pl.Trainer(
		**trainer_config,
		callbacks=[best_checkpoint_callback, utils.LitProgressBar()],
		precision=32
	)


	# Evaluating
	# Predictions on Test Dataset
	test_y_pred_y_true = trainer.predict(
		model=Model,
		dataloaders=Test_Dataloader,
		ckpt_path=resume_ckpt_path
	)
	
	test_set_metrics = []
	y_pred, y_true = concatenate_predictions(y_pred_y_true=test_y_pred_y_true)

	y_pred = y_pred[:, 1]
	y_true = np.argmax(y_true, axis=1)

	ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1, _ = calculate_metrics(y_pred=y_pred, y_true=y_true, threshold=best_threshold)
	test_set_metrics.append([0, ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1])

	return test_set_metrics, best_threshold, y_pred, y_true