Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,270 Bytes
d9c7b8a 94421ed d9c7b8a 94421ed d9c7b8a 94421ed d9c7b8a 94421ed d9c7b8a 94421ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""
Test all available models on the same image with latency measurements
"""
import os
import sys
import time
if __name__ == '__main__':
# Available models - test all 5 IQA-based models
models = ['contrique','hyperiqa', 'tres', 'arniqa', 'reiqa']
models = ['reiqa']
# models = ['reiqa', 'arniqa']
# models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
"""
---
Summary Table - All Models
| Model | Image 1 (11.14.39 PM) | Image 2 (5.50.50
PM) | Verdict |
|-----------|-----------------------|--------------------
---|-----------------------------|
| CONTRIQUE | 0.7931 (AI - 58.6%) | 0.6332 (AI - 26.6%)
| ✓ Both AI-Generated |
| HYPERIQA | 0.7602 (AI - 52.0%) | 0.8179 (AI - 63.6%)
| ✓ Both AI-Generated |
| TRES | ❌ Failed | ❌ Failed
| Model incompatible with CPU |
| REIQA | 0.3500 (Real - 30.0%) | 0.2416 (Real -
51.7%) | ✗ Both Real |
| ARNIQA | 0.7133 (AI - 42.7%) | 0.9605 (AI - 92.1%)
| ✓ Both AI-Generated |
---
"""
# Test images directory
test_images_dir = "new_images_to_test"
# Get all images from the directory
import glob
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
test_images = []
for ext in image_extensions:
test_images.extend([os.path.abspath(p) for p in glob.glob(os.path.join(test_images_dir, ext))])
if not test_images:
print(f"Error: No images found in {test_images_dir}/")
sys.exit(1)
print(f"Found {len(test_images)} image(s) in {test_images_dir}/")
print("=" * 80)
# Import libraries once
sys.path.insert(0, '.')
from yaml import safe_load
from functions.loss_optimizers_metrics import *
from functions.run_on_images_fn import run_on_images
import functions.utils as utils
import functions.networks as networks
import defaults
import warnings
warnings.filterwarnings("ignore")
all_results = {}
latency_stats = {}
# Test each model
for model_idx, model_name in enumerate(models, 1):
print(f"\n{'='*80}")
print(f"[{model_idx}/{len(models)}] Testing model: {model_name.upper()}")
print("="*80)
# Start timing model loading
model_load_start = time.time()
try:
config_path = f"configs/{model_name}.yaml"
config = safe_load(open(config_path, "r"))
# Override settings
config["dataset"]["dataset_type"] = "GenImage"
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
# Training settings (for testing)
config["train_settings"]["train"] = False
config["train_loss_fn"]["name"] = "CrossEntropy"
config["val_loss_fn"]["name"] = "CrossEntropy"
# Model setup - use CPU (MPS has compatibility issues)
device = "cpu"
feature_extractor = networks.get_model(model_name=model_name, device=device)
# Classifier
config["classifier"]["hidden_layers"] = [1024]
classifier = networks.Classifier_Arch2(
input_dim=config["classifier"]["input_dim"],
hidden_layers=config["classifier"]["hidden_layers"]
)
# Preprocessing settings
preprocess_settings = {
"model_name": model_name,
"selected_transforms_name": "test",
"probability": -1,
"gaussian_blur_range": None,
"jpeg_compression_qfs": None,
"input_image_dimensions": (224, 224),
"resize": None
}
model_load_time = time.time() - model_load_start
print(f"✓ {model_name.upper()} model loaded successfully (Load time: {model_load_time:.3f}s)\n")
results = []
inference_times = []
# Test each image with this model
for idx, test_image in enumerate(test_images, 1):
image_name = os.path.basename(test_image)
print(f" [{idx}/{len(test_images)}] Testing: {image_name}")
# Test images
test_real_images_paths = [test_image]
test_fake_images_paths = []
try:
# Start timing inference
inference_start = time.time()
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
feature_extractor=feature_extractor,
classifier=classifier,
config=config,
test_real_images_paths=test_real_images_paths,
test_fake_images_paths=test_fake_images_paths,
preprocess_settings=preprocess_settings,
best_threshold=0.5,
verbose=False
)
inference_time = time.time() - inference_start
inference_times.append(inference_time)
score = y_pred[0] if len(y_pred) > 0 else None
prediction = "AI-Generated" if score and score > 0.5 else "Real"
confidence = abs(score - 0.5) * 200 if score else 0
results.append({
'image': image_name,
'score': score,
'prediction': prediction,
'confidence': confidence,
'inference_time': inference_time
})
print(f" ✓ Score: {score:.4f} → {prediction} ({confidence:.1f}% confidence) | Time: {inference_time:.3f}s")
except Exception as e:
print(f" ✗ Error: {e}")
results.append({
'image': image_name,
'score': None,
'prediction': 'Error',
'confidence': 0,
'inference_time': None
})
all_results[model_name] = results
# Store latency statistics
if inference_times:
latency_stats[model_name] = {
'model_load_time': model_load_time,
'avg_inference_time': sum(inference_times) / len(inference_times),
'min_inference_time': min(inference_times),
'max_inference_time': max(inference_times),
'total_inference_time': sum(inference_times),
'num_images': len(inference_times)
}
except Exception as e:
print(f"✗ Failed to load {model_name.upper()} model: {e}")
all_results[model_name] = None
# Final Summary
print("\n" + "="*80)
print("FINAL SUMMARY - ALL MODELS")
print("="*80)
for model_name, results in all_results.items():
if results is None:
print(f"\n{model_name.upper()}: Failed to load")
continue
print(f"\n{model_name.upper()}:")
print("-"*80)
print(f"{'Image':<50} {'Score':<10} {'Prediction':<15} {'Confidence':<12}")
print("-"*80)
for r in results:
score_str = f"{r['score']:.4f}" if r['score'] is not None else "N/A"
conf_str = f"{r['confidence']:.1f}%" if r['score'] is not None else "N/A"
img_name = r['image'][:47] + "..." if len(r['image']) > 50 else r['image']
print(f"{img_name:<50} {score_str:<10} {r['prediction']:<15} {conf_str:<12}")
# Statistics
valid_predictions = [r for r in results if r['score'] is not None]
if valid_predictions:
avg_score = sum(r['score'] for r in valid_predictions) / len(valid_predictions)
ai_count = sum(1 for r in valid_predictions if r['score'] > 0.5)
real_count = len(valid_predictions) - ai_count
avg_confidence = sum(r['confidence'] for r in valid_predictions) / len(valid_predictions)
print("-"*80)
print(f"Average Score: {avg_score:.4f} | AI: {ai_count} | Real: {real_count} | Avg Confidence: {avg_confidence:.1f}%")
# Latency Summary
print("\n" + "="*80)
print("LATENCY PERFORMANCE COMPARISON")
print("="*80)
if latency_stats:
print(f"\n{'Model':<15} {'Load Time':<12} {'Avg Inference':<15} {'Min':<10} {'Max':<10} {'Total':<12}")
print("-"*80)
for model_name, stats in latency_stats.items():
print(f"{model_name.upper():<15} "
f"{stats['model_load_time']:<12.3f} "
f"{stats['avg_inference_time']:<15.3f} "
f"{stats['min_inference_time']:<10.3f} "
f"{stats['max_inference_time']:<10.3f} "
f"{stats['total_inference_time']:<12.3f}")
print("\n" + "-"*80)
print("Timing units: seconds (s)")
print("Load Time: Time to load model and classifier")
print("Avg Inference: Average time per image inference")
print("Min/Max: Fastest/slowest single image inference")
print("Total: Total time for all images")
# Find fastest model
fastest_model = min(latency_stats.items(), key=lambda x: x[1]['avg_inference_time'])
slowest_model = max(latency_stats.items(), key=lambda x: x[1]['avg_inference_time'])
print("\n" + "-"*80)
print(f"⚡ Fastest Model: {fastest_model[0].upper()} ({fastest_model[1]['avg_inference_time']:.3f}s per image)")
print(f"🐌 Slowest Model: {slowest_model[0].upper()} ({slowest_model[1]['avg_inference_time']:.3f}s per image)")
speedup = slowest_model[1]['avg_inference_time'] / fastest_model[1]['avg_inference_time']
print(f"📊 Speed Difference: {speedup:.2f}x faster")
print("\n" + "="*80)
|