Spaces:
Running
on
Zero
Running
on
Zero
| # Importing Libraries | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torchinfo import summary | |
| import os,sys | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| class Compute_ResNet50(torch.nn.Module): | |
| def __init__(self, | |
| device:str | |
| ): | |
| """ | |
| Args: | |
| device (str): Device used while computing ResNet50 features. | |
| """ | |
| super().__init__() | |
| # Device | |
| if device is None: | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| else: | |
| self.device = device | |
| # Model and Preprocessing Function | |
| self.model = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V2) | |
| self.model.fc = torch.nn.Identity() | |
| self.model = self.model.to(self.device) | |
| self.model.eval() | |
| def forward(self, img): | |
| return self.model(img) | |
| # Calling Main function | |
| if __name__ == '__main__': | |
| F = Compute_ResNet50(device="cuda:0") | |
| O = F.forward(torch.randn(1,3,224,224).cuda()) | |
| print (O.shape) |