lexistudio / app.py
scipious's picture
Update app.py
326f795 verified
import os
#os.environ["PYDANTIC_V1_STYLE"] = "1"
#os.environ["PYDANTIC_SKIP_VALIDATING_CORE_SCHEMAS"] = "1"
# --------------------------------------------------------------------------
from flask import Flask, render_template, jsonify, request, Response
from flask_socketio import SocketIO, emit
import uuid
import threading
import sqlite3
import gc
import time
import re
import traceback
import requests # API 호출을 위해 필요
from typing import Optional, Tuple, Any, Dict, List
# --- Together AI SDK ---
from together import Together
# --- eventlet monkey patch (Gunicorn + SocketIO 필수!) ---
import eventlet
eventlet.monkey_patch()
# --- Flask & SocketIO 설정 ---
app = Flask(__name__)
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')
import logging
# 로거 설정: 레벨을 INFO로 설정하고, 포맷을 지정합니다.
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# --- 외부 모듈 임포트 ---
# [수정됨] v02 파일명에 맞춰 임포트 (파일명이 reg_embedding_system_v02.py라면 아래와 같이 수정)
# 여기서는 편의상 reg_embedding_system으로 사용하되 내용은 v02라고 가정합니다.
import reg_embedding_system_v02 as reg_embedding_system
import leximind_prompts
# --- 전역 변수 ---
connected_clients = 0
search_document_number = 30
Filtered_search = False
filters = {"regulation": []} # [수정됨] 기본 필터 키 변경
# --- 경로 설정 ---
current_dir = os.path.dirname(os.path.abspath(__file__))
ResultFile_FolderAddress = os.path.join(current_dir, 'result.txt')
# --- RAG 데이터 경로 ---
# NOTE: Hugging Face Spaces에서 데이터가 /app/data에 있는지 확인해야 합니다.
region_paths = {
"국내": "/app/data/KMVSS_RAG",
"북미": "/app/data/FMVSS_RAG",
"유럽": "/app/data/EUR_RAG"
}
# --- 프롬프트 ---
lexi_prompts = leximind_prompts.PromptLibrary()
# 세션별 요청 추적을 위한 딕셔너리
active_sessions = {}
# --- RAG 객체 ---
region_rag_objects = {}
# --- Together AI 설정 ---
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
if not TOGETHER_API_KEY:
# 로컬 테스트용 예외 처리 등을 위해 raise 대신 경고 로그만 남길 수도 있음
logger.warning("TOGETHER_API_KEY가 설정되지 않았습니다.")
try:
client = Together(api_key=TOGETHER_API_KEY)
except NameError:
client = Together()
except Exception as e:
logger.warning(f"Together Client 초기화 실패 (API 키 확인 필요): {e}")
client = None
rag_connection_status_info = ""
# --- RAG 로딩 ---
def load_rag_objects():
global region_rag_objects
global rag_connection_status_info
logger.info(">>> [RAG_LOADER] RAG 로딩 스레드 시작 <<<")
for region, path in region_paths.items():
if not os.path.exists(path):
msg = f"[{region}] 경로 없음: {path}"
socketio.emit('message', {'message': msg})
logger.info(msg)
continue
try:
socketio.emit('message', {'message': f"[{region}] RAG 로딩 중..."})
rag_connection_status_info = f"[{region}] RAG 로딩 중..."
# [수정됨] load_embedding_from_faiss 반환값 변경 (Ensemble -> BM25)
bm25_retriever, vectorstore, sqlite_conn = reg_embedding_system.load_embedding_from_faiss(path)
sqlite_conn.close()
db_path = os.path.join(path, "metadata_mapping.db")
new_conn = sqlite3.connect(db_path, check_same_thread=False)
# [수정됨] 딕셔너리 키 변경 (ensemble_retriever -> bm25_retriever)
region_rag_objects[region] = {
"bm25_retriever": bm25_retriever,
"vectorstore": vectorstore,
"sqlite_conn": new_conn
}
socketio.emit('message', {'message': f"[{region}] 로딩 완료"})
logger.info(f"[{region}] RAG 로딩 완료")
rag_connection_status_info = f"[{region}] RAG 로딩 완료"
except Exception as e:
error_msg = f"[{region}] 로딩 실패: {str(e)}"
logger.info(error_msg)
traceback.print_exc()
socketio.emit('message', {'message': error_msg})
socketio.emit('message', {'message': "Ready to Search"})
logger.info("Ready to Search")
rag_connection_status_info = "Ready to Search"
# --- 웹 ---
@app.route('/')
def index():
return render_template('chat_v03.html')
# 전역 변수에 기본값 추가
Search_each_all_mode = True
@socketio.on('search_query')
def handle_search_query(data):
global Filtered_search
global filters
global Search_each_all_mode
session_id = str(uuid.uuid4())
active_sessions[session_id] = True
emit('search_started', {'session_id': session_id})
try:
Search_each_all_mode = data.get('searchEachMode', True)
query = data.get('query', '')
regions = data.get('regions', [])
selected_regulations = data.get('selectedRegulations', [])
emit('search_status', {'status': 'processing', 'message': '검색 요청을 처리하는 중입니다...'})
# [수정됨] 초기 필터 구조 변경 (새로운 DB 스키마 반영)
filters = {
"regulation": [], # 구 regulation_part
"section": [], # 구 regulation_section
"chapter": [], # 구 chapter_section
"standard": [] # 구 jo
}
emit('search_status', {'status': 'translating', 'message': '질문에 대해 생각 중입니다...'})
if session_id not in active_sessions:
return
Translated_query = Gemma3_AI_Translate(query)
emit('search_status', {'status': 'translated', 'message': f'번역 완료: {Translated_query}'})
if selected_regulations:
Filtered_search = True
cont_selected_num = 0
output_path = os.path.join(current_dir, "merged_ai_messages.txt")
if os.path.exists(output_path):
os.remove(output_path)
# 통합 검색 모드 - 타입별로 그룹화
grouped_regulations = group_regulations_by_type(selected_regulations)
emit('search_status', {'status': 'searching', 'message': f'선택된 {len(selected_regulations)}개 법규를 타입별로 통합하여 검색 중...'})
# 타입별로 필터 생성
combined_filters = create_combined_filters(grouped_regulations)
combined_cleaned_filter = {k: v for k, v in combined_filters.items() if v}
if Search_each_all_mode:
# 각각 검색 모드
emit('search_status', {'status': 'searching', 'message': f'선택된 {len(combined_cleaned_filter)}개 법규를 각각 검색 중...'})
total_search_num = sum(len(v) for v in combined_cleaned_filter.values())
i = 0
for RegType, RegNames in combined_cleaned_filter.items():
if RegNames:
for RegName in RegNames:
i = i + 1
if session_id not in active_sessions:
emit('search_cancelled', {'message': '검색이 취소되었습니다.'})
return
emit('search_status', {
'status': 'searching_regulation',
'message': f'법규 {i}/{len(combined_cleaned_filter)}: {RegName} 검색 중...',
'progress': (i / len(combined_cleaned_filter)) * 100
})
# 법규 타입별 필터 생성
current_filters = create_filter_by_type(RegType, RegName)
# [수정됨] failsafe_mode 인자 제거 (v02 함수 정의에 없음)
Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, current_filters)
if Rag_Results:
if session_id not in active_sessions: return
emit('search_status', {
'status': 'ai_processing',
'message': f'AI가 {RegName}에 대한 답변을 생성 중...'
})
AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)
if session_id not in active_sessions: return
emit('regulation_result', {
'regulation_title': f"[{RegName}]",
'regulation_index': i,
'total_regulations': total_search_num,
'result': AImessage
})
if isinstance(AImessage, str) and AImessage.strip():
with open(output_path, "a", encoding="utf-8") as f:
cont_selected_num += 1
from datetime import datetime
stamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"\n--- [{stamp}] message #{cont_selected_num} --- Regulation Type: {RegType} --- Regulation Name : {RegName} ---\n {AImessage}")
emit('search_complete', {'status': 'completed', 'message': '모든 법규 검색이 완료되었습니다.'})
else:
# [수정됨] failsafe_mode 인자 제거
Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, combined_filters)
if session_id in active_sessions:
emit('search_status', {'status': 'ai_processing', 'message': 'AI가 통합 답변을 생성 중...'})
AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)
if session_id in active_sessions:
emit('search_result', {'result': AImessage})
emit('search_complete', {'status': 'completed', 'message': '통합 검색이 완료되었습니다.'})
else:
Filtered_search = False
emit('search_status', {'status': 'searching_all', 'message': '전체 법규에서 검색 중...'})
# 필터 없이 검색
# [수정됨] failsafe_mode 인자 제거
Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, None)
if session_id in active_sessions:
emit('search_status', {'status': 'ai_processing', 'message': 'AI가 답변을 생성 중...'})
AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)
if session_id in active_sessions:
emit('search_result', {'result': AImessage})
emit('search_complete', {'status': 'completed', 'message': '검색이 완료되었습니다.'})
except Exception as e:
print(f"검색 오류: {e}")
traceback.print_exc()
emit('search_error', {'error': str(e), 'message': '검색 중 오류가 발생했습니다.'})
finally:
if session_id in active_sessions:
del active_sessions[session_id]
@socketio.on('cancel_search')
def handle_cancel_search(data):
session_id = data.get('session_id')
if session_id and session_id in active_sessions:
del active_sessions[session_id]
emit('search_cancelled', {'message': '검색이 취소되었습니다.'})
# --- 법규 리스트 ---
@app.route('/get_reg_list', methods=['POST'])
def get_reg_list():
data = request.get_json()
selected_regions = data.get('regions', [])
if not selected_regions:
selected_regions = ["국내", "북미", "유럽"]
all_reg_list_part = []
all_reg_list_section = []
all_reg_list_chapter = []
all_reg_list_jo = []
for region in selected_regions:
rag = region_rag_objects.get(region)
if not rag:
continue
try:
sqlite_conn = rag["sqlite_conn"]
# [수정됨] v02 스키마(regulation, section, chapter, standard)에 맞춰 쿼리
reg_list_part = get_unique_metadata_values(sqlite_conn, "regulation") # 구 regulation_part
reg_list_section = get_unique_metadata_values(sqlite_conn, "section") # 구 regulation_section
reg_list_chapter = get_unique_metadata_values(sqlite_conn, "chapter") # 구 chapter_section
reg_list_jo = get_unique_metadata_values(sqlite_conn, "standard") # 구 jo
if isinstance(reg_list_part, str): reg_list_part = [reg_list_part]
if isinstance(reg_list_section, str): reg_list_section = [reg_list_section]
if isinstance(reg_list_chapter, str): reg_list_chapter = [reg_list_chapter]
if isinstance(reg_list_jo, str): reg_list_jo = [reg_list_jo]
all_reg_list_part.extend(reg_list_part)
all_reg_list_section.extend(reg_list_section)
all_reg_list_chapter.extend(reg_list_chapter)
all_reg_list_jo.extend(reg_list_jo)
except Exception as e:
print(f"[{region}] DB 연결 오류: {e}")
# 자연 정렬 및 중복 제거
unique_reg_list_part = sorted(set(all_reg_list_part), key=reg_embedding_system.natural_sort_key)
unique_reg_list_section = sorted(set(all_reg_list_section), key=reg_embedding_system.natural_sort_key)
unique_reg_list_chapter = sorted(set(all_reg_list_chapter), key=reg_embedding_system.natural_sort_key)
unique_reg_list_jo = sorted(set(all_reg_list_jo), key=reg_embedding_system.natural_sort_key)
# Frontend(HTML)에서는 기존 key(reg_list_part 등)를 그대로 사용할 가능성이 높으므로
# 반환 변수명은 유지하되 내용은 새로운 DB 컬럼에서 가져온 것을 넣습니다.
text_result_part = "\n".join(str(item) for item in unique_reg_list_part)
text_result_section = "\n".join(str(item) for item in unique_reg_list_section)
text_result_chapter = "\n".join(str(item) for item in unique_reg_list_chapter)
text_result_jo = "\n".join(str(item) for item in unique_reg_list_jo)
return jsonify(reg_list_part=text_result_part,
reg_list_section=text_result_section,
reg_list_chapter=text_result_chapter,
reg_list_jo=text_result_jo)
# --- SocketIO ---
@socketio.on('connect')
def handle_connect():
global connected_clients
connected_clients += 1
client_ip = request.remote_addr
if request.headers.get('X-Forwarded-For'):
client_ip = request.headers.get('X-Forwarded-For').split(',')[0].strip()
elif request.headers.get('X-Real-IP'):
client_ip = request.headers.get('X-Real-IP')
elif request.headers.get('CF-Connecting-IP'):
client_ip = request.headers.get('CF-Connecting-IP')
logger.info(f"클라이언트 연결 | IP: {client_ip} | 현재 접속자: {connected_clients}명")
global rag_connection_status_info
socketio.emit('message', {'message': rag_connection_status_info})
@socketio.on('disconnect')
def handle_disconnect():
global connected_clients
connected_clients -= 1
logger.info(f"클라이언트 연결: {connected_clients}명")
def cleanup_connections():
for region, rag in region_rag_objects.items():
try:
rag["sqlite_conn"].close()
logger.info(f"[{region}] DB 연결 종료")
except:
pass
# --- Together AI 분석 ---
def Gemma3_AI_analysis(query_txt, content_txt):
content_txt = "\n".join(doc.page_content for doc in content_txt) if isinstance(content_txt, list) else str(content_txt)
query_txt = str(query_txt)
prompt = lexi_prompts.use_prompt(lexi_prompts.AI_system_prompt, query_txt=query_txt, content_txt=content_txt)
if not client:
return "AI Client가 초기화되지 않았습니다."
try:
response = client.chat.completions.create(
model="moonshotai/Kimi-K2-Instruct-0905",
messages=[{"role": "user", "content": prompt}],
)
AI_Result = response.choices[0].message.content
return AI_Result
except Exception as e:
logger.info(f"Together AI 분석 API 호출 실패: {e}")
traceback.print_exc()
return f"AI 분석 중 오류가 발생했습니다: {e}"
# --- Together AI 번역 ---
def Gemma3_AI_Translate(query_txt):
query_txt = str(query_txt)
prompt = lexi_prompts.use_prompt(lexi_prompts.query_translator, query_txt=query_txt)
if not client:
return query_txt
try:
response = client.chat.completions.create(
model="moonshotai/Kimi-K2-Instruct-0905",
messages=[{"role": "user", "content": prompt}],
)
AI_Result = response.choices[0].message.content
return AI_Result
except Exception as e:
logger.info(f"Together AI 번역 API 호출 실패: {e}")
traceback.print_exc()
return query_txt
# --- 검색 (수정됨) ---
def search_DB_from_multiple_regions(query, selected_regions, region_rag_objects, custom_filters=None):
# [수정됨] failsafe_mode 인자 제거 (v02 함수 정의와 일치시킴)
global Filtered_search
global filters
if not selected_regions:
selected_regions = list(region_rag_objects.keys())
print(f"Translated Query : {query}")
search_filters = custom_filters if custom_filters is not None else filters
has_filters = any(search_filters.get(key, []) for key in search_filters.keys())
print(f"사용된 검색 필터: {search_filters}")
combined_results = []
for region in selected_regions:
rag = region_rag_objects.get(region)
if not rag:
continue
# [수정됨] 키 변경 (ensemble_retriever -> bm25_retriever)
bm25_retriever = rag["bm25_retriever"]
vectorstore = rag["vectorstore"]
sqlite_conn = rag["sqlite_conn"]
if bm25_retriever:
if has_filters:
# [수정됨] v02 시그니처 반영 (ensemble->bm25, failsafe 제거)
results = reg_embedding_system.search_with_metadata_filter(
bm25_retriever=bm25_retriever,
vectorstore=vectorstore,
query=query,
k=search_document_number,
metadata_filter=search_filters,
sqlite_conn=sqlite_conn
)
else:
# [수정됨] v02 시그니처 반영 (retriever->bm25, failsafe 제거)
results = reg_embedding_system.smart_search_vectorstore(
bm25_retriever=bm25_retriever,
vectorstore=vectorstore,
query=query,
k=search_document_number,
sqlite_conn=sqlite_conn,
enable_detailed_search=True
)
print(f"[{region}] 검색 완료: {len(results)}건")
combined_results.extend(results)
return combined_results
# --- 최종 AI ---
def RegAI(query, Rag_Results, ResultFile_FolderAddress):
gc.collect()
AI_Result = "검색 결과가 없습니다." if not Rag_Results else Gemma3_AI_analysis(query, Rag_Results)
return AI_Result
# [수정됨] 법규 타입별 필터 생성 함수 - DB 스키마 변경 반영
def create_filter_by_type(regulation_type, regulation_title):
"""
법규 타입에 따라 적절한 필터 딕셔너리 생성
v02 DB 컬럼: regulation, section, chapter, standard
"""
filter_dict = {
"regulation": [],
"section": [],
"chapter": [],
"standard": []
}
# [수정됨] 기존 Frontend 타입 -> v02 DB 컬럼 매핑
type_mapping = {
"regulation_part": "regulation",
"regulation_section": "section",
"chapter_section": "chapter",
"jo": "standard",
# 축약형 지원
"part": "regulation",
"section": "section",
"chapter": "chapter",
}
filter_key = type_mapping.get(regulation_type, "regulation")
filter_dict[filter_key].append(regulation_title)
return filter_dict
# 법규들을 타입별로 그룹화하는 함수
def group_regulations_by_type(selected_regulations):
grouped = {
"part": [],
"section": [],
"chapter": [],
"jo": []
}
for regulation in selected_regulations:
regulation_type = regulation.get('type', 'part')
regulation_title = regulation.get('title', '')
if regulation_title and regulation_type in grouped:
grouped[regulation_type].append(regulation_title)
return grouped
# [수정됨] 통합 필터 생성 함수 - DB 키 변경 반영
def create_combined_filters(grouped_regulations):
"""그룹화된 법규들로부터 통합 필터 생성 (v02 DB 키 사용)"""
filters = {
"regulation": grouped_regulations["part"], # regulation_part -> regulation
"section": grouped_regulations["section"], # regulation_section -> section
"chapter": grouped_regulations["chapter"], # chapter_section -> chapter
"standard": grouped_regulations["jo"] # jo -> standard
}
return filters
def get_unique_metadata_values(
sqlite_conn: sqlite3.Connection,
key_name: str,
partial_match: Optional[str] = None
) -> List[str]:
"""SQLite 고유 값 반환"""
text_result = ""
if not sqlite_conn:
return text_result
cursor = sqlite_conn.cursor()
sql_query = f"SELECT DISTINCT `{key_name}` FROM documents"
params = []
if partial_match:
sql_query += f" WHERE `{key_name}` LIKE ?"
params.append(f"%{partial_match}%")
try:
cursor.execute(sql_query, params)
unique_values = [row[0] for row in cursor.fetchall() if row[0] is not None]
unique_values.sort(key=reg_embedding_system.natural_sort_key)
text_result = "\n".join(str(value) for value in unique_values)
return text_result
except Exception as e:
print(f"[에러] 고유 값 검색 실패 ({key_name}): {e}")
return text_result
# --- 실행 ---
if __name__ == '__main__':
threading.Thread(target=load_rag_objects, daemon=True).start()
time.sleep(2)
socketio.emit('message', {'message': '데이터 로딩 시작...'})
socketio.run(app, host='0.0.0.0', port=7860, debug=False)
else:
import atexit
loading_thread = threading.Thread(target=load_rag_objects, daemon=True)
loading_thread.start()
atexit.register(cleanup_connections)