Spaces:
Running
Running
| import os | |
| #os.environ["PYDANTIC_V1_STYLE"] = "1" | |
| #os.environ["PYDANTIC_SKIP_VALIDATING_CORE_SCHEMAS"] = "1" | |
| # -------------------------------------------------------------------------- | |
| from flask import Flask, render_template, jsonify, request, Response | |
| from flask_socketio import SocketIO, emit | |
| import uuid | |
| import threading | |
| import sqlite3 | |
| import gc | |
| import time | |
| import re | |
| import traceback | |
| import requests # API 호출을 위해 필요 | |
| from typing import Optional, Tuple, Any, Dict, List | |
| # --- Together AI SDK --- | |
| from together import Together | |
| # --- eventlet monkey patch (Gunicorn + SocketIO 필수!) --- | |
| import eventlet | |
| eventlet.monkey_patch() | |
| # --- Flask & SocketIO 설정 --- | |
| app = Flask(__name__) | |
| socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet') | |
| import logging | |
| # 로거 설정: 레벨을 INFO로 설정하고, 포맷을 지정합니다. | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # --- 외부 모듈 임포트 --- | |
| # [수정됨] v02 파일명에 맞춰 임포트 (파일명이 reg_embedding_system_v02.py라면 아래와 같이 수정) | |
| # 여기서는 편의상 reg_embedding_system으로 사용하되 내용은 v02라고 가정합니다. | |
| import reg_embedding_system_v02 as reg_embedding_system | |
| import leximind_prompts | |
| # --- 전역 변수 --- | |
| connected_clients = 0 | |
| search_document_number = 30 | |
| Filtered_search = False | |
| filters = {"regulation": []} # [수정됨] 기본 필터 키 변경 | |
| # --- 경로 설정 --- | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| ResultFile_FolderAddress = os.path.join(current_dir, 'result.txt') | |
| # --- RAG 데이터 경로 --- | |
| # NOTE: Hugging Face Spaces에서 데이터가 /app/data에 있는지 확인해야 합니다. | |
| region_paths = { | |
| "국내": "/app/data/KMVSS_RAG", | |
| "북미": "/app/data/FMVSS_RAG", | |
| "유럽": "/app/data/EUR_RAG" | |
| } | |
| # --- 프롬프트 --- | |
| lexi_prompts = leximind_prompts.PromptLibrary() | |
| # 세션별 요청 추적을 위한 딕셔너리 | |
| active_sessions = {} | |
| # --- RAG 객체 --- | |
| region_rag_objects = {} | |
| # --- Together AI 설정 --- | |
| TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY") | |
| if not TOGETHER_API_KEY: | |
| # 로컬 테스트용 예외 처리 등을 위해 raise 대신 경고 로그만 남길 수도 있음 | |
| logger.warning("TOGETHER_API_KEY가 설정되지 않았습니다.") | |
| try: | |
| client = Together(api_key=TOGETHER_API_KEY) | |
| except NameError: | |
| client = Together() | |
| except Exception as e: | |
| logger.warning(f"Together Client 초기화 실패 (API 키 확인 필요): {e}") | |
| client = None | |
| rag_connection_status_info = "" | |
| # --- RAG 로딩 --- | |
| def load_rag_objects(): | |
| global region_rag_objects | |
| global rag_connection_status_info | |
| logger.info(">>> [RAG_LOADER] RAG 로딩 스레드 시작 <<<") | |
| for region, path in region_paths.items(): | |
| if not os.path.exists(path): | |
| msg = f"[{region}] 경로 없음: {path}" | |
| socketio.emit('message', {'message': msg}) | |
| logger.info(msg) | |
| continue | |
| try: | |
| socketio.emit('message', {'message': f"[{region}] RAG 로딩 중..."}) | |
| rag_connection_status_info = f"[{region}] RAG 로딩 중..." | |
| # [수정됨] load_embedding_from_faiss 반환값 변경 (Ensemble -> BM25) | |
| bm25_retriever, vectorstore, sqlite_conn = reg_embedding_system.load_embedding_from_faiss(path) | |
| sqlite_conn.close() | |
| db_path = os.path.join(path, "metadata_mapping.db") | |
| new_conn = sqlite3.connect(db_path, check_same_thread=False) | |
| # [수정됨] 딕셔너리 키 변경 (ensemble_retriever -> bm25_retriever) | |
| region_rag_objects[region] = { | |
| "bm25_retriever": bm25_retriever, | |
| "vectorstore": vectorstore, | |
| "sqlite_conn": new_conn | |
| } | |
| socketio.emit('message', {'message': f"[{region}] 로딩 완료"}) | |
| logger.info(f"[{region}] RAG 로딩 완료") | |
| rag_connection_status_info = f"[{region}] RAG 로딩 완료" | |
| except Exception as e: | |
| error_msg = f"[{region}] 로딩 실패: {str(e)}" | |
| logger.info(error_msg) | |
| traceback.print_exc() | |
| socketio.emit('message', {'message': error_msg}) | |
| socketio.emit('message', {'message': "Ready to Search"}) | |
| logger.info("Ready to Search") | |
| rag_connection_status_info = "Ready to Search" | |
| # --- 웹 --- | |
| def index(): | |
| return render_template('chat_v03.html') | |
| # 전역 변수에 기본값 추가 | |
| Search_each_all_mode = True | |
| def handle_search_query(data): | |
| global Filtered_search | |
| global filters | |
| global Search_each_all_mode | |
| session_id = str(uuid.uuid4()) | |
| active_sessions[session_id] = True | |
| emit('search_started', {'session_id': session_id}) | |
| try: | |
| Search_each_all_mode = data.get('searchEachMode', True) | |
| query = data.get('query', '') | |
| regions = data.get('regions', []) | |
| selected_regulations = data.get('selectedRegulations', []) | |
| emit('search_status', {'status': 'processing', 'message': '검색 요청을 처리하는 중입니다...'}) | |
| # [수정됨] 초기 필터 구조 변경 (새로운 DB 스키마 반영) | |
| filters = { | |
| "regulation": [], # 구 regulation_part | |
| "section": [], # 구 regulation_section | |
| "chapter": [], # 구 chapter_section | |
| "standard": [] # 구 jo | |
| } | |
| emit('search_status', {'status': 'translating', 'message': '질문에 대해 생각 중입니다...'}) | |
| if session_id not in active_sessions: | |
| return | |
| Translated_query = Gemma3_AI_Translate(query) | |
| emit('search_status', {'status': 'translated', 'message': f'번역 완료: {Translated_query}'}) | |
| if selected_regulations: | |
| Filtered_search = True | |
| cont_selected_num = 0 | |
| output_path = os.path.join(current_dir, "merged_ai_messages.txt") | |
| if os.path.exists(output_path): | |
| os.remove(output_path) | |
| # 통합 검색 모드 - 타입별로 그룹화 | |
| grouped_regulations = group_regulations_by_type(selected_regulations) | |
| emit('search_status', {'status': 'searching', 'message': f'선택된 {len(selected_regulations)}개 법규를 타입별로 통합하여 검색 중...'}) | |
| # 타입별로 필터 생성 | |
| combined_filters = create_combined_filters(grouped_regulations) | |
| combined_cleaned_filter = {k: v for k, v in combined_filters.items() if v} | |
| if Search_each_all_mode: | |
| # 각각 검색 모드 | |
| emit('search_status', {'status': 'searching', 'message': f'선택된 {len(combined_cleaned_filter)}개 법규를 각각 검색 중...'}) | |
| total_search_num = sum(len(v) for v in combined_cleaned_filter.values()) | |
| i = 0 | |
| for RegType, RegNames in combined_cleaned_filter.items(): | |
| if RegNames: | |
| for RegName in RegNames: | |
| i = i + 1 | |
| if session_id not in active_sessions: | |
| emit('search_cancelled', {'message': '검색이 취소되었습니다.'}) | |
| return | |
| emit('search_status', { | |
| 'status': 'searching_regulation', | |
| 'message': f'법규 {i}/{len(combined_cleaned_filter)}: {RegName} 검색 중...', | |
| 'progress': (i / len(combined_cleaned_filter)) * 100 | |
| }) | |
| # 법규 타입별 필터 생성 | |
| current_filters = create_filter_by_type(RegType, RegName) | |
| # [수정됨] failsafe_mode 인자 제거 (v02 함수 정의에 없음) | |
| Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, current_filters) | |
| if Rag_Results: | |
| if session_id not in active_sessions: return | |
| emit('search_status', { | |
| 'status': 'ai_processing', | |
| 'message': f'AI가 {RegName}에 대한 답변을 생성 중...' | |
| }) | |
| AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress) | |
| if session_id not in active_sessions: return | |
| emit('regulation_result', { | |
| 'regulation_title': f"[{RegName}]", | |
| 'regulation_index': i, | |
| 'total_regulations': total_search_num, | |
| 'result': AImessage | |
| }) | |
| if isinstance(AImessage, str) and AImessage.strip(): | |
| with open(output_path, "a", encoding="utf-8") as f: | |
| cont_selected_num += 1 | |
| from datetime import datetime | |
| stamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| f.write(f"\n--- [{stamp}] message #{cont_selected_num} --- Regulation Type: {RegType} --- Regulation Name : {RegName} ---\n {AImessage}") | |
| emit('search_complete', {'status': 'completed', 'message': '모든 법규 검색이 완료되었습니다.'}) | |
| else: | |
| # [수정됨] failsafe_mode 인자 제거 | |
| Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, combined_filters) | |
| if session_id in active_sessions: | |
| emit('search_status', {'status': 'ai_processing', 'message': 'AI가 통합 답변을 생성 중...'}) | |
| AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress) | |
| if session_id in active_sessions: | |
| emit('search_result', {'result': AImessage}) | |
| emit('search_complete', {'status': 'completed', 'message': '통합 검색이 완료되었습니다.'}) | |
| else: | |
| Filtered_search = False | |
| emit('search_status', {'status': 'searching_all', 'message': '전체 법규에서 검색 중...'}) | |
| # 필터 없이 검색 | |
| # [수정됨] failsafe_mode 인자 제거 | |
| Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, None) | |
| if session_id in active_sessions: | |
| emit('search_status', {'status': 'ai_processing', 'message': 'AI가 답변을 생성 중...'}) | |
| AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress) | |
| if session_id in active_sessions: | |
| emit('search_result', {'result': AImessage}) | |
| emit('search_complete', {'status': 'completed', 'message': '검색이 완료되었습니다.'}) | |
| except Exception as e: | |
| print(f"검색 오류: {e}") | |
| traceback.print_exc() | |
| emit('search_error', {'error': str(e), 'message': '검색 중 오류가 발생했습니다.'}) | |
| finally: | |
| if session_id in active_sessions: | |
| del active_sessions[session_id] | |
| def handle_cancel_search(data): | |
| session_id = data.get('session_id') | |
| if session_id and session_id in active_sessions: | |
| del active_sessions[session_id] | |
| emit('search_cancelled', {'message': '검색이 취소되었습니다.'}) | |
| # --- 법규 리스트 --- | |
| def get_reg_list(): | |
| data = request.get_json() | |
| selected_regions = data.get('regions', []) | |
| if not selected_regions: | |
| selected_regions = ["국내", "북미", "유럽"] | |
| all_reg_list_part = [] | |
| all_reg_list_section = [] | |
| all_reg_list_chapter = [] | |
| all_reg_list_jo = [] | |
| for region in selected_regions: | |
| rag = region_rag_objects.get(region) | |
| if not rag: | |
| continue | |
| try: | |
| sqlite_conn = rag["sqlite_conn"] | |
| # [수정됨] v02 스키마(regulation, section, chapter, standard)에 맞춰 쿼리 | |
| reg_list_part = get_unique_metadata_values(sqlite_conn, "regulation") # 구 regulation_part | |
| reg_list_section = get_unique_metadata_values(sqlite_conn, "section") # 구 regulation_section | |
| reg_list_chapter = get_unique_metadata_values(sqlite_conn, "chapter") # 구 chapter_section | |
| reg_list_jo = get_unique_metadata_values(sqlite_conn, "standard") # 구 jo | |
| if isinstance(reg_list_part, str): reg_list_part = [reg_list_part] | |
| if isinstance(reg_list_section, str): reg_list_section = [reg_list_section] | |
| if isinstance(reg_list_chapter, str): reg_list_chapter = [reg_list_chapter] | |
| if isinstance(reg_list_jo, str): reg_list_jo = [reg_list_jo] | |
| all_reg_list_part.extend(reg_list_part) | |
| all_reg_list_section.extend(reg_list_section) | |
| all_reg_list_chapter.extend(reg_list_chapter) | |
| all_reg_list_jo.extend(reg_list_jo) | |
| except Exception as e: | |
| print(f"[{region}] DB 연결 오류: {e}") | |
| # 자연 정렬 및 중복 제거 | |
| unique_reg_list_part = sorted(set(all_reg_list_part), key=reg_embedding_system.natural_sort_key) | |
| unique_reg_list_section = sorted(set(all_reg_list_section), key=reg_embedding_system.natural_sort_key) | |
| unique_reg_list_chapter = sorted(set(all_reg_list_chapter), key=reg_embedding_system.natural_sort_key) | |
| unique_reg_list_jo = sorted(set(all_reg_list_jo), key=reg_embedding_system.natural_sort_key) | |
| # Frontend(HTML)에서는 기존 key(reg_list_part 등)를 그대로 사용할 가능성이 높으므로 | |
| # 반환 변수명은 유지하되 내용은 새로운 DB 컬럼에서 가져온 것을 넣습니다. | |
| text_result_part = "\n".join(str(item) for item in unique_reg_list_part) | |
| text_result_section = "\n".join(str(item) for item in unique_reg_list_section) | |
| text_result_chapter = "\n".join(str(item) for item in unique_reg_list_chapter) | |
| text_result_jo = "\n".join(str(item) for item in unique_reg_list_jo) | |
| return jsonify(reg_list_part=text_result_part, | |
| reg_list_section=text_result_section, | |
| reg_list_chapter=text_result_chapter, | |
| reg_list_jo=text_result_jo) | |
| # --- SocketIO --- | |
| def handle_connect(): | |
| global connected_clients | |
| connected_clients += 1 | |
| client_ip = request.remote_addr | |
| if request.headers.get('X-Forwarded-For'): | |
| client_ip = request.headers.get('X-Forwarded-For').split(',')[0].strip() | |
| elif request.headers.get('X-Real-IP'): | |
| client_ip = request.headers.get('X-Real-IP') | |
| elif request.headers.get('CF-Connecting-IP'): | |
| client_ip = request.headers.get('CF-Connecting-IP') | |
| logger.info(f"클라이언트 연결 | IP: {client_ip} | 현재 접속자: {connected_clients}명") | |
| global rag_connection_status_info | |
| socketio.emit('message', {'message': rag_connection_status_info}) | |
| def handle_disconnect(): | |
| global connected_clients | |
| connected_clients -= 1 | |
| logger.info(f"클라이언트 연결: {connected_clients}명") | |
| def cleanup_connections(): | |
| for region, rag in region_rag_objects.items(): | |
| try: | |
| rag["sqlite_conn"].close() | |
| logger.info(f"[{region}] DB 연결 종료") | |
| except: | |
| pass | |
| # --- Together AI 분석 --- | |
| def Gemma3_AI_analysis(query_txt, content_txt): | |
| content_txt = "\n".join(doc.page_content for doc in content_txt) if isinstance(content_txt, list) else str(content_txt) | |
| query_txt = str(query_txt) | |
| prompt = lexi_prompts.use_prompt(lexi_prompts.AI_system_prompt, query_txt=query_txt, content_txt=content_txt) | |
| if not client: | |
| return "AI Client가 초기화되지 않았습니다." | |
| try: | |
| response = client.chat.completions.create( | |
| model="moonshotai/Kimi-K2-Instruct-0905", | |
| messages=[{"role": "user", "content": prompt}], | |
| ) | |
| AI_Result = response.choices[0].message.content | |
| return AI_Result | |
| except Exception as e: | |
| logger.info(f"Together AI 분석 API 호출 실패: {e}") | |
| traceback.print_exc() | |
| return f"AI 분석 중 오류가 발생했습니다: {e}" | |
| # --- Together AI 번역 --- | |
| def Gemma3_AI_Translate(query_txt): | |
| query_txt = str(query_txt) | |
| prompt = lexi_prompts.use_prompt(lexi_prompts.query_translator, query_txt=query_txt) | |
| if not client: | |
| return query_txt | |
| try: | |
| response = client.chat.completions.create( | |
| model="moonshotai/Kimi-K2-Instruct-0905", | |
| messages=[{"role": "user", "content": prompt}], | |
| ) | |
| AI_Result = response.choices[0].message.content | |
| return AI_Result | |
| except Exception as e: | |
| logger.info(f"Together AI 번역 API 호출 실패: {e}") | |
| traceback.print_exc() | |
| return query_txt | |
| # --- 검색 (수정됨) --- | |
| def search_DB_from_multiple_regions(query, selected_regions, region_rag_objects, custom_filters=None): | |
| # [수정됨] failsafe_mode 인자 제거 (v02 함수 정의와 일치시킴) | |
| global Filtered_search | |
| global filters | |
| if not selected_regions: | |
| selected_regions = list(region_rag_objects.keys()) | |
| print(f"Translated Query : {query}") | |
| search_filters = custom_filters if custom_filters is not None else filters | |
| has_filters = any(search_filters.get(key, []) for key in search_filters.keys()) | |
| print(f"사용된 검색 필터: {search_filters}") | |
| combined_results = [] | |
| for region in selected_regions: | |
| rag = region_rag_objects.get(region) | |
| if not rag: | |
| continue | |
| # [수정됨] 키 변경 (ensemble_retriever -> bm25_retriever) | |
| bm25_retriever = rag["bm25_retriever"] | |
| vectorstore = rag["vectorstore"] | |
| sqlite_conn = rag["sqlite_conn"] | |
| if bm25_retriever: | |
| if has_filters: | |
| # [수정됨] v02 시그니처 반영 (ensemble->bm25, failsafe 제거) | |
| results = reg_embedding_system.search_with_metadata_filter( | |
| bm25_retriever=bm25_retriever, | |
| vectorstore=vectorstore, | |
| query=query, | |
| k=search_document_number, | |
| metadata_filter=search_filters, | |
| sqlite_conn=sqlite_conn | |
| ) | |
| else: | |
| # [수정됨] v02 시그니처 반영 (retriever->bm25, failsafe 제거) | |
| results = reg_embedding_system.smart_search_vectorstore( | |
| bm25_retriever=bm25_retriever, | |
| vectorstore=vectorstore, | |
| query=query, | |
| k=search_document_number, | |
| sqlite_conn=sqlite_conn, | |
| enable_detailed_search=True | |
| ) | |
| print(f"[{region}] 검색 완료: {len(results)}건") | |
| combined_results.extend(results) | |
| return combined_results | |
| # --- 최종 AI --- | |
| def RegAI(query, Rag_Results, ResultFile_FolderAddress): | |
| gc.collect() | |
| AI_Result = "검색 결과가 없습니다." if not Rag_Results else Gemma3_AI_analysis(query, Rag_Results) | |
| return AI_Result | |
| # [수정됨] 법규 타입별 필터 생성 함수 - DB 스키마 변경 반영 | |
| def create_filter_by_type(regulation_type, regulation_title): | |
| """ | |
| 법규 타입에 따라 적절한 필터 딕셔너리 생성 | |
| v02 DB 컬럼: regulation, section, chapter, standard | |
| """ | |
| filter_dict = { | |
| "regulation": [], | |
| "section": [], | |
| "chapter": [], | |
| "standard": [] | |
| } | |
| # [수정됨] 기존 Frontend 타입 -> v02 DB 컬럼 매핑 | |
| type_mapping = { | |
| "regulation_part": "regulation", | |
| "regulation_section": "section", | |
| "chapter_section": "chapter", | |
| "jo": "standard", | |
| # 축약형 지원 | |
| "part": "regulation", | |
| "section": "section", | |
| "chapter": "chapter", | |
| } | |
| filter_key = type_mapping.get(regulation_type, "regulation") | |
| filter_dict[filter_key].append(regulation_title) | |
| return filter_dict | |
| # 법규들을 타입별로 그룹화하는 함수 | |
| def group_regulations_by_type(selected_regulations): | |
| grouped = { | |
| "part": [], | |
| "section": [], | |
| "chapter": [], | |
| "jo": [] | |
| } | |
| for regulation in selected_regulations: | |
| regulation_type = regulation.get('type', 'part') | |
| regulation_title = regulation.get('title', '') | |
| if regulation_title and regulation_type in grouped: | |
| grouped[regulation_type].append(regulation_title) | |
| return grouped | |
| # [수정됨] 통합 필터 생성 함수 - DB 키 변경 반영 | |
| def create_combined_filters(grouped_regulations): | |
| """그룹화된 법규들로부터 통합 필터 생성 (v02 DB 키 사용)""" | |
| filters = { | |
| "regulation": grouped_regulations["part"], # regulation_part -> regulation | |
| "section": grouped_regulations["section"], # regulation_section -> section | |
| "chapter": grouped_regulations["chapter"], # chapter_section -> chapter | |
| "standard": grouped_regulations["jo"] # jo -> standard | |
| } | |
| return filters | |
| def get_unique_metadata_values( | |
| sqlite_conn: sqlite3.Connection, | |
| key_name: str, | |
| partial_match: Optional[str] = None | |
| ) -> List[str]: | |
| """SQLite 고유 값 반환""" | |
| text_result = "" | |
| if not sqlite_conn: | |
| return text_result | |
| cursor = sqlite_conn.cursor() | |
| sql_query = f"SELECT DISTINCT `{key_name}` FROM documents" | |
| params = [] | |
| if partial_match: | |
| sql_query += f" WHERE `{key_name}` LIKE ?" | |
| params.append(f"%{partial_match}%") | |
| try: | |
| cursor.execute(sql_query, params) | |
| unique_values = [row[0] for row in cursor.fetchall() if row[0] is not None] | |
| unique_values.sort(key=reg_embedding_system.natural_sort_key) | |
| text_result = "\n".join(str(value) for value in unique_values) | |
| return text_result | |
| except Exception as e: | |
| print(f"[에러] 고유 값 검색 실패 ({key_name}): {e}") | |
| return text_result | |
| # --- 실행 --- | |
| if __name__ == '__main__': | |
| threading.Thread(target=load_rag_objects, daemon=True).start() | |
| time.sleep(2) | |
| socketio.emit('message', {'message': '데이터 로딩 시작...'}) | |
| socketio.run(app, host='0.0.0.0', port=7860, debug=False) | |
| else: | |
| import atexit | |
| loading_thread = threading.Thread(target=load_rag_objects, daemon=True) | |
| loading_thread.start() | |
| atexit.register(cleanup_connections) |