Guardian-Shield Combat Impact Detector
Model Description
AI-powered combat impact classification system achieving 95.46% accuracy on 6 impact classes:
- π₯ Blast
- π« Gunshot
- π― Artillery
- π Vehicle Crash
- π€ Fall
- β Normal
Model Architecture
ResNet-inspired Deep Learning Model
- Dilated convolutions (rates: 1, 2, 4)
- Multi-head attention (16 heads)
- Squeeze-and-Excitation blocks
- Dual pooling (Average + Max)
- Parameters: ~8.4M
- Format: TensorFlow Lite (optimized for edge deployment)
Intended Use
Primary Use: Real-time combat impact detection on wearable military devices
Input: 13-channel sensor data (200 timesteps)
- 3-axis accelerometer
- 3-axis gyroscope
- 3-axis magnetometer
- Heart rate, SpO2, breathing rate, temperature
Output:
- Impact classification (6 classes)
- Severity score (0-1)
Training Data
- Size: 60,000 synthetic samples
- Method: Physics-based signal modeling with physiological responses
- Split: 70/15/15 (train/val/test)
- Augmentation: Time shifting, scaling, noise injection
Performance Metrics
| Metric | Value |
|---|---|
| Test Accuracy | 95.46% |
| Validation Accuracy | ~95.8% |
| Inference Time | <10ms (GPU T4) |
| Model Size | 6.64 MB (TFLite) |
Usage Example
import tensorflow as tf
import numpy as np
# Load model
interpreter = tf.lite.Interpreter('impact_classifier.tflite')
interpreter.allocate_tensors()
# Load normalization parameters
norm = np.load('norm.npz')
mean, std = norm['mean'], norm['std']
# Prepare sensor data (shape: [1, 200, 13])
sensor_data = your_sensor_reading # Your 13-channel sensor data
normalized = (sensor_data - mean) / std
# Run inference
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], normalized)
interpreter.invoke()
# Get predictions
impact_type = interpreter.get_tensor(output_details[0]['index'])
severity = interpreter.get_tensor(output_details[1]['index'])
# Decode results
classes = ['blast', 'gunshot', 'artillery', 'vehicle_crash', 'fall', 'normal']
predicted_class = classes[impact_type.argmax()]
severity_score = severity[0][0]
print(f"Impact: {predicted_class}")
print(f"Severity: {severity_score:.2f}")
Files in This Repository
impact_classifier.tflite- Optimized TensorFlow Lite model (6.64 MB)norm.npz- Normalization parameters (mean and std)README.md- This file
Deployment
Supported Platforms:
- β Raspberry Pi (TensorFlow Lite)
- β Android devices (TFLite Android SDK)
- β Embedded systems (ARM Cortex-M7+)
- β Edge TPU devices (Google Coral)
Limitations
β οΈ Important Considerations:
- Trained on synthetic data only
- Requires calibrated sensors (IMU + vitals)
- Performance may vary with real-world sensor noise
- Needs field validation with actual combat scenarios
- Environmental factors (temperature, altitude) may affect accuracy
Training Details
Framework: TensorFlow 2.x
Hardware: Google Colab GPU (T4)
Training Time: ~2-3 hours
Optimizer: Adam (lr=0.001, clipnorm=1.0)
Loss: Categorical Crossentropy (label smoothing=0.1) + MSE
Callbacks: Early stopping, learning rate reduction, model checkpointing
Ethical Considerations
This model is designed for defensive military applications to:
- Improve soldier safety and survivability
- Enable faster medical response
- Reduce combat casualties
Intended Users: Military medical personnel, combat medics, field commanders
Citation
@software{guardian_shield_2025,
author = {Tadikamalla, Vaibhav},
title = {Guardian-Shield Combat Impact Detector},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/tadikamallavaibhav/guardian-shield-combat-detector}
}
Related Links
- GitHub Repository: https://github.com/vaibhav-tadikamalla/tids-combat-detection
- Training Notebook: Available in GitHub repo (GUARDIAN_SHIELD_FINAL_TRAINABLE.ipynb)
- Full TIDS System: See GitHub for complete edge device implementation
Contact
Author: Vaibhav Tadikamalla
Project: TIDS - Tactical Impact Detection System
For questions, issues, or collaboration opportunities, please open an issue on GitHub.
License
MIT License - See LICENSE file in GitHub repository
- Downloads last month
- 1
Evaluation results
- Test Accuracyself-reported0.955