JIM GPT-OSS 120B Financial Adapters

Fine-tuned LoRA adapters for GPT-OSS 120B, trained on EVA Financial AI datasets.

Model Details

  • Base Model: GPT-OSS 120B (mlx-community/gpt-oss-120b-4bit)
  • Training Method: SFT โ†’ RLHF โ†’ DPO pipeline
  • LoRA Configuration: Rank 64, 64 layers
  • Domain: Financial services, lending, SEC filings

Adapters Included

Queue Dataset Stage Size
queue1_Synthetic_Lenders_Data Synthetic_Lenders_Data DPO 4.3GB
queue2_biz-training-data biz-training-data DPO 4.3GB
queue10_EVA_Datasets_Export EVA_Datasets_Export DPO 4.3GB
queue11_EVA_Training_Data EVA_Training_Data DPO 4.3GB
queue12_EVA_Training_Data_Medium EVA_Training_Data_Medium DPO 4.3GB
queue5_biz_datasets biz_datasets DPO 4.3GB
queue6_Comprehensive_Loan_Packages Comprehensive_Loan_Packages DPO 4.3GB
queue7_comprehensive_naics_20251107_131639 comprehensive_naics_20251107_131639 DPO 4.3GB
queue8_enhanced_450gb_20251107_141953 enhanced_450gb_20251107_141953 DPO 4.3GB
queue9_enhanced_450gb_20251107_181029 enhanced_450gb_20251107_181029 DPO 4.3GB
queue15_15k_full_sequenced_20251018_182458 15k_full_sequenced_20251018_182458 RLHF 4.3GB

Usage

from mlx_lm import load, generate

# Load base model with adapter
model, tokenizer = load(
    "mlx-community/gpt-oss-120b-4bit",
    adapter_path="Eva-Financial-Ai/jim-gpt-oss-120b-adapters/queue1_Synthetic_Lenders_Data"
)

# Generate
response = generate(model, tokenizer, prompt="Analyze this loan application...")

Training Data Sources

  • OWC Drive: Synthetic lenders, SEC filings, business data
  • Evadata2: Enhanced business datasets, loan packages, NAICS data
  • Evadata3: Full sequenced batches (15k-123k)

License

Apache 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support