Dataset Viewer
Auto-converted to Parquet Duplicate
problem_id
stringlengths
12
21
task_type
stringclasses
1 value
prompt
stringlengths
0
13.6k
verification_info
stringlengths
20
1.24k
metadata
stringclasses
89 values
__index_level_0__
int64
0
776k
numina_1.5_0
verifiable_math
Problem 4. A $5 \times 100$ table is divided into 500 unit square cells, where $n$ of them are coloured black and the rest are coloured white. Two unit square cells are called adjacent if they share a common side. Each of the unit square cells has at most two adjacent black unit square cells. Find the largest possible value of $n$.
{"ground_truth": "302"}
{"source": "olympiads", "problem_type": "Combinatorics"}
0
numina_1.5_1
verifiable_math
Problem 3. Find all the triples of integers $(a, b, c)$ such that the number $$ N=\frac{(a-b)(b-c)(c-a)}{2}+2 $$ is a power of 2016 . (A power of 2016 is an integer of the form $2016^{n}$, where $n$ is a non-negative integer.)
{"ground_truth": "(,b,)=(k+2,k+1,k),k\\in\\mathbb{Z}"}
{"source": "olympiads", "problem_type": "Number Theory"}
1
numina_1.5_2
verifiable_math
Problem 2. Let $n$ three-digit numbers satisfy the following properties: (1) No number contains the digit 0 . (2) The sum of the digits of each number is 9 . (3) The units digits of any two numbers are different. (4) The tens digits of any two numbers are different. (5) The hundreds digits of any two numbers are different. Find the largest possible value of $n$.
{"ground_truth": "5"}
{"source": "olympiads", "problem_type": "Combinatorics"}
2
numina_1.5_3
verifiable_math
## Problem 2 Let the circles $k_{1}$ and $k_{2}$ intersect at two distinct points $A$ and $B$, and let $t$ be a common tangent of $k_{1}$ and $k_{2}$, that touches $k_{1}$ and $k_{2}$ at $M$ and $N$, respectively. If $t \perp A M$ and $M N=2 A M$, evaluate $\angle N M B$.
{"ground_truth": "45"}
{"source": "olympiads", "problem_type": "Geometry"}
3
numina_1.5_4
verifiable_math
## Problem 4 Find all positive integers $x, y, z$ and $t$ such that $$ 2^{x} \cdot 3^{y}+5^{z}=7^{t} $$
{"ground_truth": "3,1,=2"}
{"source": "olympiads", "problem_type": "Number Theory"}
4
numina_1.5_5
verifiable_math
Problem 2. For any set $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ of five distinct positive integers denote by $S_{A}$ the sum of its elements, and denote by $T_{A}$ the number of triples $(i, j, k)$ with $1 \leqslant i<j<k \leqslant 5$ for which $x_{i}+x_{j}+x_{k}$ divides $S_{A}$. Find the largest possible value of $T_{A}$.
{"ground_truth": "4"}
{"source": "olympiads", "problem_type": "Combinatorics"}
5
numina_1.5_6
verifiable_math
Problem 4. Let $M$ be a subset of the set of 2021 integers $\{1,2,3, \ldots, 2021\}$ such that for any three elements (not necessarily distinct) $a, b, c$ of $M$ we have $|a+b-c|>10$. Determine the largest possible number of elements of $M$.
{"ground_truth": "1006"}
{"source": "olympiads", "problem_type": "Combinatorics"}
6
numina_1.5_7
verifiable_math
Problem 1. Find all distinct prime numbers $p, q$ and $r$ such that $$ 3 p^{4}-5 q^{4}-4 r^{2}=26 $$
{"ground_truth": "p=5,q=3,r=19"}
{"source": "olympiads", "problem_type": "Number Theory"}
7
numina_1.5_8
verifiable_math
Problem 2. Consider an acute triangle $A B C$ with area S. Let $C D \perp A B \quad(D \in A B)$, $D M \perp A C \quad(M \in A C)$ and $\quad D N \perp B C \quad(N \in B C)$. Denote by $H_{1}$ and $H_{2}$ the orthocentres of the triangles $M N C$ and $M N D$ respectively. Find the area of the quadrilateral $\mathrm{AH}_{1} \mathrm{BH}_{2}$ in terms of $S$.
{"ground_truth": "S"}
{"source": "olympiads", "problem_type": "Geometry"}
8
numina_1.5_9
verifiable_math
Problem 4. For a positive integer $n$, two players A and B play the following game: Given a pile of $s$ stones, the players take turn alternatively with A going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a multiple of $n$ stones. The winner is the one who takes the last stone. Assuming both $\mathrm{A}$ and $\mathrm{B}$ play perfectly, for how many values of $s$ the player A cannot win?
{"ground_truth": "n-1"}
{"source": "olympiads", "problem_type": "Combinatorics"}
9
numina_1.5_10
verifiable_math
Problem 1. Find all pairs $(a, b)$ of positive integers such that $$ 11 a b \leq a^{3}-b^{3} \leq 12 a b $$
{"ground_truth": "(5,2)"}
{"source": "olympiads", "problem_type": "Inequalities"}
10
numina_1.5_11
verifiable_math
Problem 4. We call an even positive integer $n$ nice if the set $\{1,2, \ldots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of 3 . For example, 6 is nice, because the set $\{1,2,3,4,5,6\}$ can be partitioned into subsets $\{1,2\},\{3,6\},\{4,5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.
{"ground_truth": "2^{2022}-1"}
{"source": "olympiads", "problem_type": "Combinatorics"}
11
numina_1.5_12
verifiable_math
## Problem 1. Find all pairs $(a, b)$ of positive integers such that $a!+b$ and $b!+a$ are both powers of 5 .
{"ground_truth": "(1,4),(4,1),(5,5)"}
{"source": "olympiads", "problem_type": "Number Theory"}
12
numina_1.5_13
verifiable_math
Problem 1. Find all triples $(a, b, c)$ of real numbers such that the following system holds: $$ \left\{\begin{array}{l} a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\ a^{2}+b^{2}+c^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \end{array}\right. $$
{"ground_truth": "(,b,)=(,\\frac{1}{},1),(,\\frac{1}{},-1)"}
{"source": "olympiads", "problem_type": "Algebra"}
13
numina_1.5_14
verifiable_math
Problem 4. Find all pairs $(p, q)$ of prime numbers such that $$ 1+\frac{p^{q}-q^{p}}{p+q} $$ is a prime number.
{"ground_truth": "(2,5)"}
{"source": "olympiads", "problem_type": "Number Theory"}
14
numina_1.5_15
verifiable_math
Problem 4. Consider a regular $2 n$-gon $P, A_{1} A_{2} \ldots A_{2 n}$ in the plane, where $n$ is a positive integer. We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$, if the line segment $S E$ contains no other points that lie on the sides of $P$ except $S$. We color the sides of $P$ in 3 different colors (ignore the vertices of $P$, we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once. Moreover, from every point in the plane external to $P$, points of at most 2 different colors on $P$ can be seen. Find the number of distinct such colorings of $P$ (two colorings are considered distinct if at least one of the sides is colored differently).
{"ground_truth": "6n"}
{"source": "olympiads", "problem_type": "Combinatorics"}
15
numina_1.5_16
verifiable_math
Problem 1. Find all prime numbers $a, b, c$ and positive integers $k$ which satisfy the equation $$ a^{2}+b^{2}+16 \cdot c^{2}=9 \cdot k^{2}+1 $$
{"ground_truth": "(37,3,3,13),(17,3,3,7),(3,37,3,13),(3,17,3,7),(3,3,2,3)"}
{"source": "olympiads", "problem_type": "Number Theory"}
16
numina_1.5_17
verifiable_math
Problem 2. Let $a, b, c$ be positive real numbers such that $a+b+c=3$. Find the minimum value of the expression $$ A=\frac{2-a^{3}}{a}+\frac{2-b^{3}}{b}+\frac{2-c^{3}}{c} $$ ![](https://cdn.mathpix.com/cropped/2024_06_05_f56efd4e6fb711c0f78eg-2.jpg?height=348&width=477&top_left_y=109&top_left_x=241) $19^{\text {th }}$ Junior Balkan Mathematical Olympiad June 24-29, 2015, Belgrade, Serbia
{"ground_truth": "3"}
{"source": "olympiads", "problem_type": "Inequalities"}
17
numina_1.5_18
verifiable_math
A2. Let $a$ and $b$ be positive real numbers such that $3 a^{2}+2 b^{2}=3 a+2 b$. Find the minimum value of $$ A=\sqrt{\frac{a}{b(3 a+2)}}+\sqrt{\frac{b}{a(2 b+3)}} $$
{"ground_truth": "\\frac{2}{\\sqrt{5}}"}
{"source": "olympiads", "problem_type": "Algebra"}
18
numina_1.5_19
verifiable_math
C1. Consider a regular $2 n+1$-gon $P$ in the plane, where $n$ is a positive integer. We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$, if the line segment $S E$ contains no other points that lie on the sides of $P$ except $S$. We want to color the sides of $P$ in 3 colors, such that every side is colored in exactly one color, and each color must be used at least once. Moreover, from every point in the plane external to $P$, at most 2 different colors on $P$ can be seen (ignore the vertices of $P$, we consider them colorless). Find the largest positive integer for which such a coloring is possible.
{"ground_truth": "1"}
{"source": "olympiads", "problem_type": "Combinatorics"}
19
numina_1.5_20
verifiable_math
C2. Consider a regular $2 n$-gon $P$ in the plane, where $n$ is a positive integer. We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$, if the line segment $S E$ contains no other points that lie on the sides of $P$ except $S$. We want to color the sides of $P$ in 3 colors, such that every side is colored in exactly one color, and each color must be used at least once. Moreover, from every point in the plane external to $P$, at most 2 different colors on $P$ can be seen (ignore the vertices of $P$, we consider them colorless). Find the number of distinct such colorings of $P$ (two colorings are considered distinct if at least one side is colored differently).
{"ground_truth": "6n"}
{"source": "olympiads", "problem_type": "Combinatorics"}
20
numina_1.5_21
verifiable_math
NT3. Find all pairs of positive integers $(x, y)$ such that $2^{x}+3^{y}$ is a perfect square.
{"ground_truth": "(4,2)"}
{"source": "olympiads", "problem_type": "Number Theory"}
21
numina_1.5_22
verifiable_math
NT4. Solve in nonnegative integers the equation $5^{t}+3^{x} 4^{y}=z^{2}$.
{"ground_truth": "(,x,y,z)=(1,0,1,3),(0,1,0,2),(2,2,2,13),(0,1,2,7)"}
{"source": "olympiads", "problem_type": "Number Theory"}
22
numina_1.5_23
verifiable_math
NT5. Find all positive integers $n$ such that there exists a prime number $p$, such that $$ p^{n}-(p-1)^{n} $$ is a power of 3 . Note. A power of 3 is a number of the form $3^{a}$ where $a$ is a positive integer.
{"ground_truth": "2"}
{"source": "olympiads", "problem_type": "Number Theory"}
23
numina_1.5_24
verifiable_math
A4. Solve the following equation for $x, y, z \in \mathbb{N}$ $$ \left(1+\frac{x}{y+z}\right)^{2}+\left(1+\frac{y}{z+x}\right)^{2}+\left(1+\frac{z}{x+y}\right)^{2}=\frac{27}{4} $$
{"ground_truth": "z"}
{"source": "olympiads", "problem_type": "Algebra"}
24
numina_1.5_25
verifiable_math
A5. Find the largest positive integer $n$ for which the inequality $$ \frac{a+b+c}{a b c+1}+\sqrt[n]{a b c} \leq \frac{5}{2} $$ holds for all $a, b, c \in[0,1]$. Here $\sqrt[1]{a b c}=a b c$.
{"ground_truth": "3"}
{"source": "olympiads", "problem_type": "Inequalities"}
25
numina_1.5_26
verifiable_math
G4. Let $A B C$ be an acute-angled triangle with circumcircle $\Gamma$, and let $O, H$ be the triangle's circumcenter and orthocenter respectively. Let also $A^{\prime}$ be the point where the angle bisector of angle $B A C$ meets $\Gamma$. If $A^{\prime} H=A H$, find the measure of angle $B A C$. ![](https://cdn.mathpix.com/cropped/2024_06_05_61d3145f18c90bf9f370g-07.jpg?height=519&width=1042&top_left_y=1756&top_left_x=541) Figure 4: Exercise G4.
{"ground_truth": "60"}
{"source": "olympiads", "problem_type": "Geometry"}
26
numina_1.5_27
verifiable_math
NT5. Find all the positive integers $x, y, z, t$ such that $2^{x} \cdot 3^{y}+5^{z}=7^{t}$.
{"ground_truth": "3,1,=2"}
{"source": "olympiads", "problem_type": "Number Theory"}
27
numina_1.5_28
verifiable_math
A1. Find all ordered triples $(x, y, z)$ of real numbers satisfying the following system of equations: $$ \begin{aligned} x^{3} & =\frac{z}{y}-2 \frac{y}{z} \\ y^{3} & =\frac{x}{z}-2 \frac{z}{x} \\ z^{3} & =\frac{y}{x}-2 \frac{x}{y} \end{aligned} $$
{"ground_truth": "(1,1,-1),(1,-1,1),(-1,1,1),(-1,-1,-1)"}
{"source": "olympiads", "problem_type": "Algebra"}
28
numina_1.5_29
verifiable_math
A2. Find the largest possible value of the expression $\left|\sqrt{x^{2}+4 x+8}-\sqrt{x^{2}+8 x+17}\right|$ where $x$ is a real number.
{"ground_truth": "\\sqrt{5}"}
{"source": "olympiads", "problem_type": "Algebra"}
29
numina_1.5_30
verifiable_math
N3. Find all ordered pairs $(a, b)$ of positive integers for which the numbers $\frac{a^{3} b-1}{a+1}$ and $\frac{b^{3} a+1}{b-1}$ are positive integers.
{"ground_truth": "(1,3),(2,2),(3,3)"}
{"source": "olympiads", "problem_type": "Number Theory"}
30
numina_1.5_31
verifiable_math
N5. Find all ordered triples $(x, y, z)$ of positive integers satisfying the equation $$ \frac{1}{x^{2}}+\frac{y}{x z}+\frac{1}{z^{2}}=\frac{1}{2013} $$
{"ground_truth": "(x,y,z)=(2013n,2013n^{2}-2,2013n)"}
{"source": "olympiads", "problem_type": "Number Theory"}
31
numina_1.5_32
verifiable_math
N6. Find all ordered triples $(x, y, z)$ of integers satisfying the following system of equations: $$ \begin{aligned} x^{2}-y^{2} & =z \\ 3 x y+(x-y) z & =z^{2} \end{aligned} $$
{"ground_truth": "(0,0,0),(1,0,1),(0,1,-1),(1,2,-3),(2,1,3)"}
{"source": "olympiads", "problem_type": "Algebra"}
32
numina_1.5_33
verifiable_math
## A1 MLD Let $x, y, z$ be real numbers, satisfying the relations $$ \left\{\begin{array}{l} x \geq 20 \\ y \geq 40 \\ z \geq 1675 \\ x+y+z=2015 \end{array}\right. $$ Find the greatest value of the product $P=x \cdot y \cdot z$.
{"ground_truth": "48407500"}
{"source": "olympiads", "problem_type": "Algebra"}
33
numina_1.5_34
verifiable_math
## A2 ALB 3) If $x^{3}-3 \sqrt{3} x^{2}+9 x-3 \sqrt{3}-64=0$, find the value of $x^{6}-8 x^{5}+13 x^{4}-5 x^{3}+49 x^{2}-137 x+2015$.
{"ground_truth": "1898"}
{"source": "olympiads", "problem_type": "Algebra"}
34
numina_1.5_35
verifiable_math
NT1 SAU What is the greatest number of integers that can be selected from a set of 2015 consecutive numbers so that no sum of any two selected numbers is divisible by their difference?
{"ground_truth": "672"}
{"source": "olympiads", "problem_type": "Number Theory"}
35
numina_1.5_36
verifiable_math
## C1 BUL A board $n \times n(n \geq 3)$ is divided into $n^{2}$ unit squares. Integers from 0 to $n$ included are written down: one integer in each unit square, in such a way that the sums of integers in each $2 \times 2$ square of the board are different. Find all $n$ for which such boards exist.
{"ground_truth": "3\\leqn\\leq6"}
{"source": "olympiads", "problem_type": "Combinatorics"}
36
numina_1.5_37
verifiable_math
## C3 ALB Positive integers are put into the following table | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | | | | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | 2 | 5 | 9 | 14 | 20 | 27 | 35 | 44 | | | | 4 | 8 | 13 | 19 | 26 | 34 | 43 | 53 | | | | 7 | 12 | 18 | 25 | 33 | 42 | | | | | | 11 | 17 | 24 | 32 | 41 | | | | | | | 16 | 23 | | | | | | | | | | $\ldots$ | | | | | | | | | | | $\ldots$ | | | | | | | | | | Find the number of the line and column where the number 2015 stays.
{"ground_truth": "2015"}
{"source": "olympiads", "problem_type": "Number Theory"}
37
numina_1.5_38
verifiable_math
C4 GRE Let $n \geq 1$ be a positive integer. A square of side length $n$ is divided by lines parallel to each side into $n^{2}$ squares of side length 1 . Find the number of parallelograms which have vertices among the vertices of the $n^{2}$ squares of side length 1 , with both sides smaller or equal to 2 , and which have the area equal to 2 .
{"ground_truth": "7n^{2}-12n+1"}
{"source": "olympiads", "problem_type": "Combinatorics"}
38
numina_1.5_39
verifiable_math
C3 The nonnegative integer $n$ and $(2 n+1) \times(2 n+1)$ chessboard with squares colored alternatively black and white are given. For every natural number $m$ with $1<m<2 n+1$, an $m \times m$ square of the given chessboard that has more than half of its area colored in black, is called a $B$-square. If the given chessboard is a $B$-square, find in terms of $n$ the total number of $B$-squares of this chessboard.
{"ground_truth": "\\frac{(n+1)(2n^{2}+4n+3)}{3}"}
{"source": "olympiads", "problem_type": "Combinatorics"}
39
numina_1.5_40
verifiable_math
G2 Let $A B C D$ be a convex quadrilateral with $\varangle D A C=\varangle B D C=36^{\circ}, \varangle C B D=18^{\circ}$ and $\varangle B A C=72^{\circ}$. If $P$ is the point of intersection of the diagonals $A C$ and $B D$, find the measure of $\varangle A P D$.
{"ground_truth": "108"}
{"source": "olympiads", "problem_type": "Geometry"}
40
numina_1.5_41
verifiable_math
NT1 Find all the pairs positive integers $(x, y)$ such that $$ \frac{1}{x}+\frac{1}{y}+\frac{1}{[x, y]}+\frac{1}{(x, y)}=\frac{1}{2} $$ where $(x, y)$ is the greatest common divisor of $x, y$ and $[x, y]$ is the least common multiple of $x, y$.
{"ground_truth": "(8,8),(9,24),(24,9),(5,20),(20,5),(12,15),(15,12),(8,12),(12,8),(6,12),(12,6)"}
{"source": "olympiads", "problem_type": "Number Theory"}
41
numina_1.5_42
verifiable_math
## A1 For any real number a, let $\lfloor a\rfloor$ denote the greatest integer not exceeding a. In positive real numbers solve the following equation $$ n+\lfloor\sqrt{n}\rfloor+\lfloor\sqrt[3]{n}\rfloor=2014 $$
{"ground_truth": "1956"}
{"source": "olympiads", "problem_type": "Number Theory"}
42
numina_1.5_43
verifiable_math
## C2 In a country with $n$ cities, all direct airlines are two-way. There are $r>2014$ routes between pairs of different cities that include no more than one intermediate stop (the direction of each route matters). Find the least possible $n$ and the least possible $r$ for that value of $n$.
{"ground_truth": "2016"}
{"source": "olympiads", "problem_type": "Combinatorics"}
43
numina_1.5_44
verifiable_math
## C3 For a given positive integer n, two players $A$ and B play the following game: Given is pile of $\boldsymbol{\Omega}$ stones. The players take turn alternatively with A going first. On each turn the player is allowed to take one stone, a prime number of stones, or a multiple of $n$ stones. The winner is the one who takes the last stone. Assuming perfect play, find the number of values for $S_{\infty}$, for which A cannot win.
{"ground_truth": "n-1"}
{"source": "olympiads", "problem_type": "Combinatorics"}
44
numina_1.5_45
verifiable_math
## C4 Let $A=1 \cdot 4 \cdot 7 \cdot \ldots \cdot 2014$ be the product of the numbers less or equal to 2014 that give remainder 1 when divided by 3 . Find the last non-zero digit of $A$.
{"ground_truth": "2"}
{"source": "olympiads", "problem_type": "Number Theory"}
45
numina_1.5_46
verifiable_math
## G3 Let $C D \perp A B(D \in A B), D M \perp A C(M \in A C)$ and $D N \perp B C(N \in B C)$ for an acute triangle ABC with area $S$. If $H_{1}$ and $H_{2}$ are the orthocentres of the triangles $M N C$ and MND respectively. Evaluate the area of the quadrilateral $\mathrm{AH}_{1} \mathrm{BH}_{2}$.
{"ground_truth": "S"}
{"source": "olympiads", "problem_type": "Geometry"}
46
numina_1.5_47
verifiable_math
## N1 Each letter of the word OHRID corresponds to a different digit belonging to the set $(1,2,3,4,5)$. Decipher the equality $(O+H+R+I+D)^{2}:(O-H-R+I+D)=O^{H^{R^{I_{D}^{D}}}}$.
{"ground_truth": "O=5,H=2,R=1,I=3,D=4orO=5,H=2,R=1"}
{"source": "olympiads", "problem_type": "Logic and Puzzles"}
47
numina_1.5_48
verifiable_math
N3 Find the integer solutions of the equation $$ x^{2}=y^{2}\left(x+y^{4}+2 y^{2}\right) $$
{"ground_truth": "(x,y)=(0,0),(12,-2),(12,2),(-8,-2),(-8,2)"}
{"source": "olympiads", "problem_type": "Algebra"}
48
numina_1.5_49
verifiable_math
## N6 Vukasin, Dimitrije, Dusan, Stefan and Filip asked their professor to guess a three consecutive positive integer numbers after they had told him these (true) sentences: Vukasin: "Sum of the digits of one of them is a prime number. Sum of the digits of some of the other two is an even perfect number ( $n$ is perfect if $\sigma(n)=2 n$ ). Sum of the digits of the remaining number is equal to the number of its positive divisors." Dimitrije:"Each of these three numbers has no more than two digits 1 in its decimal representation." Dusan:"If we add 11 to one of them, we obtain a square of an integer." Stefan:"Each of them has exactly one prime divisor less then 10." Filip:"The 3 numbers are square-free." Their professor gave the correct answer. Which numbers did he say?
{"ground_truth": "2013,2014,2015"}
{"source": "olympiads", "problem_type": "Number Theory"}
49
numina_1.5_51
verifiable_math
A3. Let $A$ and $B$ be two non-empty subsets of $X=\{1,2, \ldots, 11\}$ with $A \cup B=X$. Let $P_{A}$ be the product of all elements of $A$ and let $P_{B}$ be the product of all elements of $B$. Find the minimum and maximum possible value of $P_{A}+P_{B}$ and find all possible equality cases.
{"ground_truth": "12636"}
{"source": "olympiads", "problem_type": "Combinatorics"}
50
numina_1.5_52
verifiable_math
C3. In a $5 \times 100$ table we have coloured black $n$ of its cells. Each of the 500 cells has at most two adjacent (by side) cells coloured black. Find the largest possible value of $n$.
{"ground_truth": "302"}
{"source": "olympiads", "problem_type": "Combinatorics"}
51
numina_1.5_53
verifiable_math
C4. We have a group of $n$ kids. For each pair of kids, at least one has sent a message to the other one. For each kid $A$, among the kids to whom $A$ has sent a message, exactly $25 \%$ have sent a message to $A$. How many possible two-digit values of $n$ are there?
{"ground_truth": "26"}
{"source": "olympiads", "problem_type": "Combinatorics"}
52
numina_1.5_54
verifiable_math
C5. An economist and a statistician play a game on a calculator which does only one operation. The calculator displays only positive integers and it is used in the following way: Denote by $n$ an integer that is shown on the calculator. A person types an integer, $m$, chosen from the set $\{1,2, \ldots, 99\}$ of the first 99 positive integers, and if $m \%$ of the number $n$ is again a positive integer, then the calculator displays $m \%$ of $n$. Otherwise, the calculator shows an error message and this operation is not allowed. The game consists of doing alternatively these operations and the player that cannot do the operation looses. How many numbers from $\{1,2, \ldots, 2019\}$ guarantee the winning strategy for the statistician, who plays second? For example, if the calculator displays 1200, the economist can type 50 , giving the number 600 on the calculator, then the statistician can type 25 giving the number 150 . Now, for instance, the economist cannot type 75 as $75 \%$ of 150 is not a positive integer, but can choose 40 and the game continues until one of them cannot type an allowed number.
{"ground_truth": "931"}
{"source": "olympiads", "problem_type": "Number Theory"}
53
numina_1.5_55
verifiable_math
N2. Find all triples $(p, q, r)$ of prime numbers such that all of the following numbers are integers $$ \frac{p^{2}+2 q}{q+r}, \quad \frac{q^{2}+9 r}{r+p}, \quad \frac{r^{2}+3 p}{p+q} $$
{"ground_truth": "(2,3,7)"}
{"source": "olympiads", "problem_type": "Number Theory"}
54
numina_1.5_56
verifiable_math
N4. Find all integers $x, y$ such that $$ x^{3}(y+1)+y^{3}(x+1)=19 $$
{"ground_truth": "(2,1),(1,2),(-1,-20),(-20,-1)"}
{"source": "olympiads", "problem_type": "Algebra"}
55
numina_1.5_57
verifiable_math
N5. Find all positive integers $x, y, z$ such that $$ 45^{x}-6^{y}=2019^{z} $$
{"ground_truth": "(2,1,1)"}
{"source": "olympiads", "problem_type": "Number Theory"}
56
numina_1.5_58
verifiable_math
N6. Find all triples $(a, b, c)$ of nonnegative integers that satisfy $$ a!+5^{b}=7^{c} $$
{"ground_truth": "(,b,)\\in{(3,0,1),(1,2,1),(4,2,2)}"}
{"source": "olympiads", "problem_type": "Number Theory"}
57
numina_1.5_59
verifiable_math
N7. Find all perfect squares $n$ such that if the positive integer $a \geqslant 15$ is some divisor of $n$ then $a+15$ is a prime power.
{"ground_truth": "1,4,9,16,49,64,196"}
{"source": "olympiads", "problem_type": "Number Theory"}
58
numina_1.5_60
verifiable_math
NT1 Solve in positive integers the equation $1005^{x}+2011^{y}=1006^{z}$.
{"ground_truth": "(2,1,2)"}
{"source": "olympiads", "problem_type": "Number Theory"}
59
numina_1.5_61
verifiable_math
NT2 Find all prime numbers $p$ such that there exist positive integers $x, y$ that satisfy the relation $x\left(y^{2}-p\right)+y\left(x^{2}-p\right)=5 p$.
{"ground_truth": "p\\in{2,3,7}"}
{"source": "olympiads", "problem_type": "Number Theory"}
60
numina_1.5_62
verifiable_math
NT3 Find all positive integers $n$ such that the equation $y^{2}+x y+3 x=n\left(x^{2}+x y+3 y\right)$ has at least a solution $(x, y)$ in positive integers.
{"ground_truth": "n\\in{1,3,4,9}"}
{"source": "olympiads", "problem_type": "Number Theory"}
61
numina_1.5_63
verifiable_math
NT4 Find all prime positive integers $p, q$ such that $2 p^{3}-q^{2}=2(p+q)^{2}$.
{"ground_truth": "(p,q)=(3,2)"}
{"source": "olympiads", "problem_type": "Number Theory"}
62
numina_1.5_64
verifiable_math
NT5 Find the least positive integer such that the sum of its digits is 2011 and the product of its digits is a power of 6 .
{"ground_truth": "34\\underbrace{88\\ldots8}_{93}\\underbrace{99\\ldots9}_{140}"}
{"source": "olympiads", "problem_type": "Number Theory"}
63
numina_1.5_65
verifiable_math
G2 Let $A D, B F$ and $C E$ be the altitudes of $\triangle A B C$. A line passing through $D$ and parallel to $A B$ intersects the line $E F$ at the point $G$. If $H$ is the orthocenter of $\triangle A B C$, find the angle $\widehat{C G H}$.
{"ground_truth": "90"}
{"source": "olympiads", "problem_type": "Geometry"}
64
numina_1.5_66
verifiable_math
G3 Let $A B C$ be a triangle in which ( $B L$ is the angle bisector of $\widehat{A B C}(L \in A C), A H$ is an altitude of $\triangle A B C(H \in B C)$ and $M$ is the midpoint of the side $[A B]$. It is known that the midpoints of the segments $[B L]$ and $[M H]$ coincides. Determine the internal angles of triangle $\triangle A B C$.
{"ground_truth": "60"}
{"source": "olympiads", "problem_type": "Geometry"}
65
numina_1.5_67
verifiable_math
G4 Point $D$ lies on the side $[B C]$ of $\triangle A B C$. The circumcenters of $\triangle A D C$ and $\triangle B A D$ are $O_{1}$ and $O_{2}$, respectively and $O_{1} O_{2} \| A B$. The orthocenter of $\triangle A D C$ is $H$ and $A H=O_{1} O_{2}$. Find the angles of $\triangle A B C$ if $2 m(<C)=3 m(<B)$.
{"ground_truth": "\\widehat{BAC}=105,\\widehat{ABC}=30,\\widehat{ACB}=45"}
{"source": "olympiads", "problem_type": "Geometry"}
66
numina_1.5_68
verifiable_math
G5 Inside the square $A B C D$, the equilateral triangle $\triangle A B E$ is constructed. Let $M$ be an interior point of the triangle $\triangle A B E$ such that $M B=\sqrt{2}, M C=\sqrt{6}, M D=\sqrt{5}$ and $M E=\sqrt{3}$. Find the area of the square $A B C D$.
{"ground_truth": "3+\\sqrt{6}"}
{"source": "olympiads", "problem_type": "Geometry"}
67
numina_1.5_69
verifiable_math
NT2. Find all four digit numbers A such that $$ \frac{1}{3} A+2000=\frac{2}{3} \bar{A} $$ where $\bar{A}$ is the number with the same digits as $A$, but written in opposite order. (For example, $\overline{1234}=4321$.)
{"ground_truth": "2004"}
{"source": "olympiads", "problem_type": "Number Theory"}
68
numina_1.5_70
verifiable_math
Problem A2. Determine all four digit numbers $\overline{a b c d}$ such that $$ a(a+b+c+d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(a^{6}+2 b^{6}+3 c^{6}+4 d^{6}\right)=\overline{a b c d} $$
{"ground_truth": "2010"}
{"source": "olympiads", "problem_type": "Number Theory"}
69
numina_1.5_71
verifiable_math
Problem A3. Find all pairs $(x, y)$ of real numbers such that $|x|+|y|=1340$ and $x^{3}+y^{3}+2010 x y=670^{3}$.
{"ground_truth": "(-670,-670),(1005,-335),(-335,1005)"}
{"source": "olympiads", "problem_type": "Algebra"}
70
numina_1.5_72
verifiable_math
Problem G2. Consider a triangle $A B C$ and let $M$ be the midpoint of the side $B C$. Suppose $\angle M A C=\angle A B C$ and $\angle B A M=105^{\circ}$. Find the measure of $\angle A B C$.
{"ground_truth": "30"}
{"source": "olympiads", "problem_type": "Geometry"}
71
numina_1.5_73
verifiable_math
Problem C1. There are two piles of coins, each containing 2010 pieces. Two players A and B play a game taking turns (A plays first). At each turn, the player on play has to take one or more coins from one pile or exactly one coin from each pile. Whoever takes the last coin is the winner. Which player will win if they both play in the best possible way?
{"ground_truth": "Bwins"}
{"source": "olympiads", "problem_type": "Combinatorics"}
72
numina_1.5_74
verifiable_math
Problem N1. Find all positive integers $n$ such that $n 2^{n+1}+1$ is a perfect square.
{"ground_truth": "n=0n=3"}
{"source": "olympiads", "problem_type": "Number Theory"}
73
numina_1.5_75
verifiable_math
Problem N2. Find all positive integers $n$ such that $36^{n}-6$ is a product of two or more consecutive positive integers.
{"ground_truth": "1"}
{"source": "olympiads", "problem_type": "Number Theory"}
74
numina_1.5_76
verifiable_math
A3. Determine the number of pairs of integers $(m, n)$ such that $$ \sqrt{n+\sqrt{2016}}+\sqrt{m-\sqrt{2016}} \in \mathbb{Q} $$
{"ground_truth": "1"}
{"source": "olympiads", "problem_type": "Algebra"}
75
numina_1.5_77
verifiable_math
C1. Let $S_{n}$ be the sum of reciprocal values of non-zero digits of all positive integers up to (and including) $n$. For instance, $S_{13}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{2}+\frac{1}{1}+\frac{1}{3}$. Find the least positive integer $k$ making the number $k!\cdot S_{2016}$ an integer.
{"ground_truth": "7"}
{"source": "olympiads", "problem_type": "Number Theory"}
76
numina_1.5_78
verifiable_math
C2. The natural numbers from 1 to 50 are written down on the blackboard. At least how many of them should be deleted, in order that the sum of any two of the remaining numbers is not a prime?
{"ground_truth": "25"}
{"source": "olympiads", "problem_type": "Number Theory"}
77
numina_1.5_79
verifiable_math
C3. Consider any four pairwise distinct real numbers and write one of these numbers in each cell of a $5 \times 5$ array so that each number occurs exactly once in every $2 \times 2$ subarray. The sum over all entries of the array is called the total sum of that array. Determine the maximum number of distinct total sums that may be obtained in this way.
{"ground_truth": "60"}
{"source": "olympiads", "problem_type": "Combinatorics"}
78
numina_1.5_80
verifiable_math
C4. A splitting of a planar polygon is a finite set of triangles whose interiors are pairwise disjoint, and whose union is the polygon in question. Given an integer $n \geq 3$, determine the largest integer $m$ such that no planar $n$-gon splits into less than $m$ triangles.
{"ground_truth": "\\lceiln/3\\rceil"}
{"source": "olympiads", "problem_type": "Geometry"}
79
numina_1.5_81
verifiable_math
N1. Determine the largest positive integer $n$ that divides $p^{6}-1$ for all primes $p>7$.
{"ground_truth": "504"}
{"source": "olympiads", "problem_type": "Number Theory"}
80
numina_1.5_82
verifiable_math
N2. Find the maximum number of natural numbers $x_{1}, x_{2}, \ldots, x_{m}$ satisfying the conditions: a) No $x_{i}-x_{j}, 1 \leq i<j \leq m$ is divisible by 11 ; and b) The sum $x_{2} x_{3} \ldots x_{m}+x_{1} x_{3} \ldots x_{m}+\cdots+x_{1} x_{2} \ldots x_{m-1}$ is divisible by 11 .
{"ground_truth": "10"}
{"source": "olympiads", "problem_type": "Number Theory"}
81
numina_1.5_83
verifiable_math
N4. Find all triples of integers $(a, b, c)$ such that the number $$ N=\frac{(a-b)(b-c)(c-a)}{2}+2 $$ is a power of 2016 .
{"ground_truth": "(,b,)=(k+2,k+1,k),k\\in\\mathbb{Z}"}
{"source": "olympiads", "problem_type": "Number Theory"}
82
numina_1.5_84
verifiable_math
N5. Determine all four-digit numbers $\overline{a b c d}$ such that $$ (a+b)(a+c)(a+d)(b+c)(b+d)(c+d)=\overline{a b c d} $$
{"ground_truth": "2016"}
{"source": "olympiads", "problem_type": "Number Theory"}
83
numina_1.5_85
verifiable_math
A 1. Find all triples $(a, b, c)$ of real numbers such that the following system holds: $$ \left\{\begin{array}{l} a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\ a^{2}+b^{2}+c^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \end{array}\right. $$
{"ground_truth": "(,b,)=(,\\frac{1}{},1),(,\\frac{1}{},-1)"}
{"source": "olympiads", "problem_type": "Algebra"}
84
numina_1.5_86
verifiable_math
A 2. Consider the sequence $a_{1}, a_{2}, a_{3}, \ldots$ defined by $a_{1}=9$ and $$ a_{n+1}=\frac{(n+5) a_{n}+22}{n+3} $$ for $n \geqslant 1$. Find all natural numbers $n$ for which $a_{n}$ is a perfect square of an integer.
{"ground_truth": "n=1orn=8"}
{"source": "olympiads", "problem_type": "Number Theory"}
85
numina_1.5_87
verifiable_math
A 3. Find all triples of positive real numbers $(a, b, c)$ so that the expression $$ M=\frac{(a+b)(b+c)(a+b+c)}{a b c} $$ gets its least value.
{"ground_truth": "==\\sqrt[3]{\\frac{1+\\sqrt{5}}{2}},b=\\frac{1}{}"}
{"source": "olympiads", "problem_type": "Inequalities"}
86
numina_1.5_88
verifiable_math
NT 2. Find all positive integers $a, b, c$ and $p$, where $p$ is a prime number, such that $$ 73 p^{2}+6=9 a^{2}+17 b^{2}+17 c^{2} $$
{"ground_truth": "(,b,,p)\\in{(1,1,4,2),(1,4,1,2)}"}
{"source": "olympiads", "problem_type": "Number Theory"}
87
numina_1.5_89
verifiable_math
NT 3. Find the largest integer $k(k \geq 2)$, for which there exists an integer $n(n \geq k)$ such that from any collection of $n$ consecutive positive integers one can always choose $k$ numbers, which verify the following conditions: 1. each chosen number is not divisible by 6 , by 7 and by 8 ; 2. the positive difference of any two different chosen numbers is not divisible by at least one of the numbers 6,7 or 8 .
{"ground_truth": "108"}
{"source": "olympiads", "problem_type": "Number Theory"}
88
numina_1.5_90
verifiable_math
NT 4. Find all prime numbers $p$ such that $$ (x+y)^{19}-x^{19}-y^{19} $$ is a multiple of $p$ for any positive integers $x, y$.
{"ground_truth": "2,3,7,19"}
{"source": "olympiads", "problem_type": "Number Theory"}
89
numina_1.5_91
verifiable_math
NT 8. Find all pairs $(p, q)$ of prime numbers such that $$ 1+\frac{p^{q}-q^{p}}{p+q} $$ is a prime number.
{"ground_truth": "(2,5)"}
{"source": "olympiads", "problem_type": "Number Theory"}
90
numina_1.5_92
verifiable_math
A 2. Find the maximum positive integer $k$ such that for any positive integers $m, n$ such that $m^{3}+n^{3}>$ $(m+n)^{2}$, we have $$ m^{3}+n^{3} \geq(m+n)^{2}+k $$
{"ground_truth": "10"}
{"source": "olympiads", "problem_type": "Inequalities"}
91
numina_1.5_93
verifiable_math
A 4. Let $k>1, n>2018$ be positive integers, and let $n$ be odd. The nonzero rational numbers $x_{1}$, $x_{2}, \ldots, x_{n}$ are not all equal and satisfy $$ x_{1}+\frac{k}{x_{2}}=x_{2}+\frac{k}{x_{3}}=x_{3}+\frac{k}{x_{4}}=\cdots=x_{n-1}+\frac{k}{x_{n}}=x_{n}+\frac{k}{x_{1}} $$ Find: a) the product $x_{1} x_{2} \ldots x_{n}$ as a function of $k$ and $n$ b) the least value of $k$, such that there exist $n, x_{1}, x_{2}, \ldots, x_{n}$ satisfying the given conditions.
{"ground_truth": "4"}
{"source": "olympiads", "problem_type": "Algebra"}
92
numina_1.5_94
verifiable_math
A 7. Let $A$ be a set of positive integers with the following properties: (a) If $n$ is an element of $A$ then $n \leqslant 2018$. (b) If $S$ is a subset of $A$ with $|S|=3$ then there are two elements $n, m$ of $S$ with $|n-m| \geqslant \sqrt{n}+\sqrt{m}$. What is the maximum number of elements that $A$ can have?
{"ground_truth": "88"}
{"source": "olympiads", "problem_type": "Combinatorics"}
93
numina_1.5_95
verifiable_math
C 1. A set $S$ is called neighbouring if it has the following two properties: a) $S$ has exactly four elements b) for every element $x$ of $S$, at least one of the numbers $x-1$ or $x+1$ belongs to $S$. Find the number of all neighbouring subsets of the set $\{1,2, \ldots, n\}$.
{"ground_truth": "\\frac{(n-3)(n-2)}{2}"}
{"source": "olympiads", "problem_type": "Combinatorics"}
94
numina_1.5_96
verifiable_math
C 2. A set $T$ of $n$ three-digit numbers has the following five properties: (1) No number contains the digit 0 . (2) The sum of the digits of each number is 9 . (3) The units digits of any two numbers are different. (4) The tens digits of any two numbers are different. (5) The hundreds digits of any two numbers are different. Find the largest possible value of $n$.
{"ground_truth": "5"}
{"source": "olympiads", "problem_type": "Combinatorics"}
95
numina_1.5_97
verifiable_math
NT 1. Find all the integers pairs $(x, y)$ which satisfy the equation $$ x^{5}-y^{5}=16 x y $$
{"ground_truth": "(x,y)=(0,0)or(-2,2)"}
{"source": "olympiads", "problem_type": "Number Theory"}
96
numina_1.5_98
verifiable_math
NT 2. Find all pairs $(m, n)$ of positive integers such that $$ 125 \cdot 2^{n}-3^{m}=271 $$
{"ground_truth": "(,n)=(6,3)"}
{"source": "olympiads", "problem_type": "Number Theory"}
97
numina_1.5_100
verifiable_math
A1 Determine all integers $a, b, c$ satisfying the identities: $$ \begin{gathered} a+b+c=15 \\ (a-3)^{3}+(b-5)^{3}+(c-7)^{3}=540 \end{gathered} $$
{"ground_truth": "(,b,)\\in{(-1,0,16),(-2,1,16),(7,10,-2),(8,9,-2)}"}
{"source": "olympiads", "problem_type": "Algebra"}
98
numina_1.5_101
verifiable_math
A2 Find the maximum value of $z+x$, if $(x, y, z, t)$ satisfies the conditions: $$ \left\{\begin{array}{l} x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9 \\ x t+y z \geq 6 \end{array}\right. $$
{"ground_truth": "\\sqrt{13}"}
{"source": "olympiads", "problem_type": "Algebra"}
99
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
4